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Abstract

The notion of climate sensitivity has become synonymous with equilibrium
climate sensitivity (ECS), or the equilibrium response of the Earth system
to a doubling of CO;. But there is a hierarchy of measures of climate sensi-
tivity, which can be arranged in order of increasing complexity and societal
relevance and which mirror the historical development of climate model-
ing. Elements of this hierarchy include the well-known ECS and transient
climate response and the lesser-known transient climate response to cumu-
lative emissions and zero emissions commitment. This article describes this
hierarchy of climate sensitivities and associated modeling approaches. Key
concepts reviewed along the way include climate forcing and feedback, ocean
heat uptake, and the airborne fraction of cumulative emissions. We employ
simplified theoretical models throughout to encapsulate well-understood as-
pects of these quantities and to highlight gaps in our understanding and areas
for future progress.

m There is a hierarchy of measures of climate sensitivity, which exhibit a
range of complexity and societal relevance.

m Equilibrium climate sensitivity is only one of these measures, and our
understanding of it may have reached a plateau.

m The more complex measures introduce new quantities, such as ocean
heat uptake coefficient and airborne fraction, which deserve increased
attention.
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1. INTRODUCTION

Climate sensitivity is a primary raison d’etre of modern climate science, quantifying how global
mean surface temperature responds to changes in carbon dioxide. Because many climate impacts
scale with mean surface temperature [e.g., extreme temperature and precipitation (Seneviratne
et al. 2016)], climate sensitivity encapsulates many aspects of the potential severity of global
warming.

But formulating a precise definition of climate sensitivity raises difficult questions. Over what
timescale should climate sensitivity be assessed? Should it be assessed in response to changes in
CO; concentration, which is the variable most relevant for the greenhouse effect, or in response
to CO; emissions, which is the quantity most directly influenced by human activity?

Climate science has responded by constructing several metrics of climate sensitivity, which are
the subject of this review. We define them more precisely in Section 2, but briefly they are:

m Equilibrium climate sensitivity (ECS): The equilibrium temperature response to a doubling
of atmospheric CO; concentrations.

m Transient climate response (T'CR): The transient temperature response to a 1% /year in-
crease in atmospheric CO;, evaluated when the CO; concentration has doubled. The TCR
includes the transient effects of ocean heat uptake and is smaller than ECS.

m Transient climate response to cumulative emissions (TCRE): The transient temperature
response per unit of cumulative CO, emissions, usually quoted in Kelvin per gigatonne
carbon (K/GtC). This metric accounts for transient carbon uptake by the land and ocean,
as well as ocean heat uptake.

m Zero emissions commitment (ZEC): The change in temperature after emissions have been
set to zero. ZEC is computed as the system approaches both thermal and chemical equilib-
rium, where the latter redistributes emitted carbon among the atmosphere, land, and ocean.

These metrics clearly span a spectrum of complexity, which also corresponds to their relevance.
The TCRE and ZEC, which are the most complex metrics and account for the most processes, are
also the most relevant and play a key role in international policy (Section 2.4). The metrics above
are also interrelated, in that the more complex metrics are functions of the simpler ones (expres-
sions in Table 1). A full understanding of climate sensitivity thus seems to require consideration
of the entire hierarchy of metrics.

Table 1 A hierarchy of climate sensitivities

Metric (acronym) Model CO, OHFC(x) | SST(x) Expression Units

Cess sensitivity AGCM P - P A[ASST(x)] W/m?/K
Equilibrium climate sensitivity SOM P P I Fox K

(ECS) Al
Transient climate response (TCR) | AOGCM P I I Fox K

Y+ Al

Transient climate response to ESM I I 1 XTCR K/GtC

cumulative emissions (T'CRE) Co

Zero emissions commitment ESM I I I g/ Xge K

(ZEC)

TCR/ECS ~ 1 (normalized)

The various metrics of climate sensitivity along with their corresponding model configurations, with complexity increasing downward. As one descends the

hierarchy, important boundary conditions such as SST, OHFC, and CO; concentration transition from being prescribed (P) to interactive (I), with model

complexity increasing accordingly. Various analytical expressions for the sensitivities, developed in later sections, are also provided. Note that although

ZEC has units of K, the expression for ZEC (from Equation 30) is normalized and hence dimensionless. Abbreviations: AGCM, atmosphere-only global

climate model; AOGCM, atmosphere-ocean global climate model; ESM, Earth system model; OHFC, ocean heat flux convergence; SOM, slab-ocean

model; SST, sea-surface temperature.
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Historically, however, attention has not been distributed evenly across this hierarchy but has
instead been focused on ECS (Charney et al. 1979, Mitchell et al. 1990, Knutti & Hegerl 2008).
There are several reasons for this, including the simplicity of the definition of ECS, its encapsula-
tion of both CO; radiative forcing and the all-important feedback parameter (Section 1.1), and the
ability of ECS to capture intermodel spread in warming under realistic scenarios (e.g., Raper et al.
2002, Grose et al. 2018). This attention to ECS has paid off in a rather detailed understanding of
forcing and feedback (Sherwood et al. 2020).

But we may have reached a point of strongly diminishing returns in our quest to un-
derstand ECS. The long, multi-millennial equilibration timescale of modern global climate
models (GCMs) makes ECS nontrivial to evaluate (Dunne et al. 2020b, Rugenstein et al. 2020,
Rugenstein & Armour 2021). Furthermore, the so-called pattern effect tells us that even if
we could accurately evaluate ECS, the associated feedback parameter may not be relevant for
near-term global warming (Section 3.5). Finally, ECS is unobservable in both a present-day and
paleoclimate context, as fixing CO, concentrations for millennia is an unrealistic future scenario,
and ECS does not account for certain Earth system feedbacks such as ice sheet and vegetation
changes, which operate on longer timescales (Lunt et al. 2010, Previdi et al. 2013).

Given these limitations of ECS, our aim in this article is to zoom out and consider the full slate
of sensitivity metrics outlined above as a coherent whole. The range of complexity of these metrics
mirrors that of our climate models, and indeed each metric has coevolved with our modeling
capabilities. We survey the role each metric plays in our understanding of climate change and
take stock of how well we understand the metrics themselves. We take a theoretical approach
throughout, highlighting where simple models capture Earth system behavior and where they do
not, thus pointing out strengths and weaknesses in our understanding.

This article is thus not a review in the standard sense; we seek to be neither comprehensive
in our coverage of topics nor exhaustive in our references to the literature. We do summarize
important recent developments, and attempt to identify ways forward. We focus our attention on
models [sometimes even just Geophysical Fluid Dynamics Laboratory (GFDL) models] to present
our experience and point of view, but this in no way discounts the essential value of observations
or other modeling approaches.

1.1. The Forcing-Feedback Framework

Before discussing the various metrics of climate sensitivity in more detail, we must set the stage
with the forcing-feedback framework for global warming. In addition to Earth’s global mean
surface temperature! Ty, another key variable is Earth’s top-of-atmosphere (TOA) net radiation
balance,

N=S—OLR (netradiation, W/m?), 1.

where S is the net downward solar (or shortwave) radiation at the TOA, accounting for Earth’s
planetary albedo (fraction of sunlight reflected), and OLR is Earth’s outgoing longwave radiation
or thermal infrared radiation emitted to space at TOA. N is positive when energy is accumulating
in the system, and N equals zero in equilibrium (although see sidebar titled Equilibrium Versus
Steady-State in Climate Science).

By surface temperature, we really mean near-surface air temperature, which can differ slightly from the land
or ocean surface temperature (Cowtan et al. 2015). Also, in this article 7§ typically denotes a surface temper-
ature anomaly from a climatological mean, although in a few cases (such as Equation 12) it denotes absolute
temperature; such exceptions should be clear from context.
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GCM: global climate
model

TOA:
top-of-atmosphere

Longwave radiation:
thermal infrared
radiation

Shortwave radiation:
solar radiation,
including visible and
near-infrared
frequencies

OLR: outgoing
longwave radiation

Albedo: fraction of
sunlight reflected

369



EQUILIBRIUM VERSUS STEADY-STATE IN CLIMATE SCIENCE

In climate science, a state in which the TOA net radiation N is equal to zero is conventionally referred to as ther-

mal equilibrium. Thermodynamically speaking, however, this is a misnomer: N = 0 actually describes a steady-state

balance between incoming radiation from the Sun and outgoing thermal radiation to space. Earth is not in equilib-

rium with either body, the net energy fluxes between them do not vanish, and Earth instead attains a temperature
in between them. This should be contrasted with the behavior of the carbon cycle in Earth system models, in which
CO; concentrations do truly equilibrate: There are no external sources or sinks of carbon, and the net carbon

fluxes between the land, ocean, and atmosphere do vanish. Nonetheless, the use of the term equilibrium to describe

a thermal steady-state in climate is ubiquitous, so we adopt this terminology here.

SST: sea-surface
temperature
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The forcing-feedback framework says that global warming can be divided into two processes
that change N in opposite ways. First, consider a change in atmospheric CO; (or any other radia-
tively active forcing agent) from an initial specific concentration ¢; to a perturbed concentration g,
with all other variables (including 7) held fixed. This induces a change in N, which is by definition
the radiative forcing F:

F = N(g) — N(g) (W/m?). 2.

The second process is that the surface temperature 7 (and other climate variables) will re-
spond to the forcing, causing countervailing changes in N that eventually bring the system back
to equilibrium (N = 0). This negative change in N per unit 7, which is typically dominated by
increasing thermal emission to space (OLR) but may also include changes in S due to albedo
changes, is known as the feedback parameter:

dN

A=
dT;

(W/m?/K, A <0). 3.

Together, these perturbations yield a net energy imbalance of
N =F + AT, 4.

This is the forcing-feedback decomposition of N.

Because A < 0 in a stable climate, we often refer instead to the magnitude of the feedback
parameter |A|. The feedback parameter plays a key role, as a small value of |A| means that relatively
large T perturbations are required to significantly impact N, making the climate system more
sensitive to perturbations as it tries to restore equilibrium.

2. A HIERARCHY OF CLIMATE SENSITIVITIES

We now survey the various metrics of climate sensitivity in greater detail, discussing how they
are defined and computed and illustrating with simulations (Figure 1). As a guide, we organize
these metrics vertically into a hierarchy in Table 1, with the most primitive measures of climate
sensitivity at the top and more sophisticated measures that account for more processes toward the
bottom. Accordingly, Table 1 also includes a hierarchy of climate model configurations of varying
complexity that exhibit a natural correspondence with the hierarchy of climate sensitivities. These
model configurations are distinguished by whether important boundary conditions such as sea-
surface temperature (SST), ocean heat flux convergence, and CO, concentration are externally
prescribed or interactively simulated (predicted) by the model. This correspondence is discussed
in more detail for each individual metric.

Feevanjee et al.



lllustration of climate sensitivity metrics: ECS, TCR, TCRE, and ZEC
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(@) Global mean surface temperature T versus time for a multi-millennial atmosphere-ocean GCM simulation using GFDL CM3
(Donner et al. 2011, Paynter et al. 2018). CO; concentrations increase at 1% /year until doubling at year 70 and are held fixed
thereafter. TCR is the warming at year 70, and ECS is the equilibrium warming after several millennia. Note the log time axis.

(b) T versus time for an Earth system simulation with an active carbon cycle using GFDL ESM4. Constant emissions of roughly

14 GtC/year are prescribed until roughly 3°C of warming, at which point emissions cease. The T'CRE is the slope of T versus
cumulative emissions Cemic (green axis, upper left) while emissions are nonzero, and ZEC is the difference between the final warming 7T
and the warming when emissions are zeroed T5.. Abbreviations: ECS, equilibrium climate sensitivity; GFDL, Geophysical Fluid
Dynamics Laboratory; GtC, gigatons carbon; TCR, transient climate response; TCRE, transient climate response to cumulative
emissions; ZEC, zero emissions commitment.

2.1. Cess Sensitivity AGCM:

atmosphere-only

Perhaps the most primitive notion of climate sensitivity is the Cess sensitivity, which is an es- -~/

timate of A obtained from atmosphere-only GCMs (AGCMs) operating over prescribed SSTs.?

?Land temperatures are determined interactively but largely follow the prescribed SST5, e.g., https://www.
gfdl.noaa.gov/blog_held/11-is-continental-warming-a-slave- to-warming- of- the- ocean-surface/.
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Cess sensitivity is computed by running an AGCM simulation over a present-day or preindus-
trial SST distribution SST(x) and then running a second perturbation simulation over SST(x) +
ASST, where ASST is typically a uniform perturbation of 2 or 4 K. The resulting TOA radiation
perturbation AN divided by ASST yields an estimate of A via Equation 3.

Because A exerts a strong control on virtually every measure of climate sensitivity, including
and especially ECS (Equation 6), it is of interest in model development to assess how A differs
between models and model versions. The Cess sensitivity has been useful in this regard in the past
(Cess et al. 1989, Gettelman et al. 2012, Zhao et al. 2018).

However, the utility of the Cess sensitivity has diminished in recent years due to the pattern
effect. As mentioned above and discussed further in Section 3.5, the pattern effect is the observa-
tion that A does not take on a single well-defined value but instead depends on the spatial pattern
of warming (Armour et al. 2013, Andrews et al. 2015, Gregory & Andrews 2016). In other words,
if ASST(x) is a spatially varying SST perturbation due to global warming, then A has a functional
dependence on ASST(x), i.e.,

A = A[ASST ()] (pattern effect). 5.

Thus, while the Cess sensitivity remains a useful benchmark for comparing atmospheric models,
it is unclear how a Cess sensitivity or A calculated from a uniform SST increase might be related
to the Cess sensitivity calculated from a more realistic warming pattern. There are also significant
questions about what constitutes a realistic or relevant warming pattern, and on what timescale;
this is discussed further in Section 3.5.

2.2. Equilibrium Climate Sensitivity

The next metric in Table 1 is ECS, introduced in Section 1 as the equilibrium warming due to a
doubling of CO, concentrations. ECS is conceptually the simplest sensitivity metric and has been
a focus of climate science for decades. ECS was the subject of early calculations with 1D atmo-
spheric models (Arrhenius 1896, Hulburt 1931, Callendar 1938, Plass 1956), culminating in the
seminal work of Manabe & Wetherald (1967) who identified the necessary physical ingredients
for a credible estimate of ECS (Jeevanjee et al. 2022). ECS has also been a mainstay of GCM in-
tercomparisons and government assessment reports, beginning with the Charney report (Charney
etal. 1979) and continuing on through many generations of assessments by the Intergovernmen-
tal Panel on Climate Change (IPCC) (e.g., Mitchell et al. 1990, Randall et al. 2007, Forster et al.
2021).

Throughout these reports, ECS has consistently been assessed at roughly 3°C, but with a rela-
tively large likely range (66-100% probability) of roughly 1.5-4.5°C (Meehl et al. 2020). A major
goal of climate science has been to reduce this uncertainty (Stevens et al. 2016), and recent years
have in fact shown significant progress, with the likely range shrinking to roughly 2.6-4°C in the
latest assessments (Sherwood et al. 2020, Forster et al. 2021).

A key ingredient in this achievement is the forcing-feedback framework of Section 1.1. Equi-
librium requires that N = 0, i.e., that the increased radiation to space |A|T; in Equation 4 balances
the forcing F. In the case of a doubling of CO,, we write the forcing as F,, and Equation 4 then
implies

Fax
Al

"This forcing-feedback decomposition of ECS shows that ECS captures two of the most important
determinants of climate change, 7 and A, and conversely has allowed us to constrain ECS by

ECS = 6.

constraining F and A individually.

Feevanjee et al.



The calculation of ECS has a tortuous history. The first global calculations of ECS were per-
formed in slab-ocean models (SOMs), or AGCMs coupled to shallow, motionless water columns
that mimic the mixed layer of the real ocean and are thus able to interactively simulate SST(x)
(Manabe & Stouffer 1980, Hansen et al. 1984). The horizontal transport of heat by ocean cur-
rents is represented by an externally prescribed ocean heat flux convergence OHFC(x) (units of
W/m?) (e.g., McFarlane et al. 1992). ECS can be straightforwardly computed in SOMs by dou-
bling CO, and running the model to a new equilibrium, typically achieved within 30 years. As
such, SOMs are a natural tool for calculating ECS, as suggested by Table 1. Indeed, even after
the advent of fully coupled atmosphere-ocean GCMs (AOGCM:s or coupled models) with a full-
depth dynamical ocean, ECS was still calculated with SOMs (Meehl et al. 2005) because coupled
models require millennia to equilibrate. This is illustrated in Figure 14 for GFDLs CM3 coupled
model, which equilibrates after roughly 4,000 years.

In time, however, a practical workaround for calculating ECS from unequilibrated AOGCM
simulations was developed by regressing TOA radiation imbalance N against surface tempera-
ture 7; and then extrapolating to equilibrium at N = 0 (Gregory et al. 2004, Danabasoglu &
Gent 2009). This methodology became standard practice, using 150-year coupled simulations in
which CO, was abruptly quadrupled and then held constant (abrupt4x simulations) (Taylor et al.
2012, Eyring et al. 2016).> But the pattern effect fundamentally complicates this method: The
surface warming pattern and hence the feedback parameter can evolve with time (Section 3.5;
Figure 2), so extrapolation is unreliable and tends to underestimate ECS (Dunne et al. 2020b,
Rugenstein et al. 2020). Indeed, the ECS for CM3 found via a standard extrapolation method
is 4°C (Andrews et al. 2012b), a roughly 20% underestimate of the model’s true ECS of 4.8°C
(Figure 1a).

To resolve this tension, the regression-based ECS estimate has become known as the effective
climate sensitivity, which is distinct from true, fully equilibrated ECS but can be viewed as a practi-
cal proxy for it (Rugenstein & Armour 2021). Indeed, the comprehensive assessment of Sherwood
et al. (2020) is actually an assessment of effective climate sensitivity, not true ECS, allowing that
work to leverage the widely performed and archived abrupt4x simulations. This approach has
led to much progress and tighter constraints on ECS, as noted above and discussed further in
Section 3. But the contortions required to study ECS in coupled models suggest there may be
limits to this progress, and Table 1 suggests that ECS is perhaps most naturally studied in SOMs.
We comment further on this point in Section 7.

2.3. Transient Climate Response

The next rung in the climate sensitivity hierarchy is the TCR, a measure of the sensitivity of
surface temperature to an increase in CO, concentrations over multi-decadal timescales, dur-
ing which the interior ocean is far from equilibrium and hence so is 7. Such transient warming
was initially studied using 1D diffusive or upwelling-diffusion models of ocean heat uptake (e.g.,
Hoffert et al. 1980, Wigley & Schlesinger 1985). However, the precise definition of TCR was not
formulated until the advent of transient AOGCM simulations in which it became conventional
to gradually increase CO; concentrations by 1% /year (Washington & Meehl 1989, Manabe et al.
1991). TCR was then defined as the temperature anomaly averaged around year 70 of such a
1pctCO?2 simulation, at which point CO; has doubled.*

3To improve the signal-to-noise ratio, CO; is often quadrupled rather than doubled, and the resulting
temperature perturbation is divided by 2 to obtain ECS.

#This follows from the rule of 70, i.e., the time to doubling is = fmctiomlnz ~ 70

I growth rate percentage growth rate *
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SOM: slab-ocean
model

Mixed layer: the
well-mixed upper layer
of the ocean, typically
50-100 m in depth

OHFC: ocean heat
flux convergence; the
rate at which ocean
currents converge heat
into a column of ocean
(in W/m?)

AOGCM: coupled
atmosphere-ocean

GCM

Abrupt4x: coupled
simulations in which
CQO; concentrations
are abruptly
quadrupled and then
held fixed

1pctCO2: coupled
simulations for
probing transient
climate change in
which CO»
concentrations are
gradually increased at
1% per year
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The pattern effect

Years 1-70 Years 70-420 Years 420-4,800
AT, (mean 2.2 K) AT (mean 1.4 K) AT (mean 1.3 K)

Figure 2

AT (K) or AN/AT (W/m?2/K)

= | T
-5 -4 -3 -2 -1 0 1 2 3 4 5

Maps of surface temperature change AT (2—) and local feedback AN/AT; (d—f) for the CM3 simulation shown in Figure 14, where
the changes are evaluated across the time periods specified at the top of each column. Global mean values for each field are in
parentheses. Years 1-70 are the period of increasing CO3, after which COj is fixed at 2X preindustrial. The local feedback AN/AT; for
a given period is calculated as local AN(x) divided by global mean AT, and its global mean gives the corresponding feedback parameter
A. Between the first and last period, the spatial pattern of warming shifts dramatically, and the corresponding A changes by a factor of 2.
Figure adapted from Paynter et al. (2018), figure 4.
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The definition of T'CR, and its relationship to ECS, is illustrated by the CM3 coupled model
simulation shown in Figure 1a, in which CO, concentrations are increased by 1% /year until
year 70 and then held fixed for several millennia to allow for full equilibration. Such a scenario
facilitates the calculation of T'CR as well as true ECS from a single simulation. The T'CR here is
1.9°C, close to the IPCC best estimate of 1.8 & 0.4°C (likely range) (Forster et al. 2021).

As can be seen from the figure, in CM3 the TCR is slightly less than half of ECS, a typical
result.’ This is largely due to heat uptake by the deep subsurface ocean, which has an extremely
large heat capacity, providing a significant heat sink for the surface mixed layer while it slowly
equilibrates. These dynamics can be modeled rather simply with the two-box model of the ocean,
discussed in Section 4. There it is argued that on the multi-decadal timescales relevant for TCR,
the radiation imbalance is equal to the deep ocean heat uptake and can be written as

>The ratio of TCR to ECS, also known as the realized warming, does vary among models, however, and is an
important indicator of the thermal disequilibrium between the surface and interior ocean (Stouffer & Manabe
1999, Raper et al. 2002).

Feevanjee et al.



where v is a constant known as the ocean heat uptake coefficient;® plugging this into Equation 4
and solving for T yields an expression for TCR:

F 2x
v+l
Comparing Equation 8 to Equation 6 confirms that TCR < ECS due to ocean heat uptake. We

TCR = 8.

discuss applications of Equation 8 in Section 4. It should be noted that heat uptake coefficienty has
been much less studied than the feedback parameter A; we comment further on this in Section 7.

2.4. Transient Climate Response to Cumulative Emissions and Zero
Emissions Commitment

The final rungs in the climate sensitivity hierarchy of Table 1 are the TCRE and ZEC. These
quantities are defined in the context of Earth system model (ESM) simulations, which feature an
interactive carbon cycle and hence explicitly simulate the exchange of carbon (and other bio-
geochemical quantities) between the land, atmosphere, and ocean. Because atmospheric CO,
concentrations are typically interactive in ESMs rather than prescribed (Table 1), such models
can then be used to simulate the climate response to CO, emissions rather than just the response
to concentrations. Experiments with ESMs over the past 15 years or so have led to two striking
findings that now form the basis for climate mitigation policy.

The first such finding is that global warming is proportional to cumulative emissions (e.g.,
Allen et al. 2009, Matthews et al. 2009, MacDougall 2016). This is illustrated in Figure 15, which
shows an idealized simulation with GFDLs ESM4.1 (Dunne et al. 2020a) featuring constant emis-
sions E of roughly 14 GtC/year until 3°C of warming is reached, at which point emissions cease
(E = 0). During the constant emissions phase the surface temperature 7; increases roughly lin-
early with time ¢, and because the cumulative emissions Cepic(t) = fof E(t))dt = Et are also linear
in time (green axis in upper left of Figure 15), we indeed have

Ts ~ ACemit, 9.

where the proportionality constant A is by definition the TCRE. The TCRE for GFDLs ESM4
is A =~ 1.4 Kelvin per thousand gigatonnes carbon (K/1,000 GtC) (slope of green line in the left
of Figure 15).

Like ECS and TCR, the precise value of TCRE is uncertain; it varies among models, with an
IPCC best estimate of 1.65 £ 0.65°C (likely range) (Canadell et al. 2021). For a given model, how-
ever, the proportionality (Equation 9) is rather robust over time and across emissions scenarios,
with a fixed value of A (Matthews et al. 2009, Gillett et al. 2013, Herrington & Zickfeld 2014).
The physics underlying this are reviewed in Section 6, but for the moment we emphasize that
this robust proportionality of temperature to cumulative emissions has had major implications for
policy. Most profoundly, it implies that net zero emissions are required to halt global warming:
Because E = dCopii/dt, E = 0 is required to stabilize 7,.” Furthermore, Equation 9 implies that
any temperature target (e.g., 1.5 or 2°C) should be associated with a cumulative emissions target,
rather than a target CO; concentration or emissions rate (Allen et al. 2009, Matthews et al. 2012).
This then implies a remaining carbon budget for a given temperature target, and indeed such a
framework is now the norm for climate mitigation (Rogelj et al. 2019, Matthews et al. 2020). For

This parameter is also often denoted with a k (Raper et al. 2002, Kuhlbrodt & Gregory 2012).
7Tt must be noted, however, that some climate impacts (such as sea level rise and ocean acidification) do not
scale with 7 and continue to increase even after emissions cease (e.g., Gillett et al. 2011).

www.annualreviews.org o A Holistic View of Climate Sensitivity
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SYSTEM LINEARITY

A system responds linearly to forcing if its response to a sum of forcings equals the sum of the responses to the
individual forcings. That is, if X;(z) is the response of a state variable X to forcing F(z), then linearity means that
the response to > ;F;(?) is given by Y ;. X;(#). In this case, one may obtain the response to an arbitrary forcing by

integrating that forcing against a Green’s function (the response to a delta function forcing), as in Equation 11.

One explicit example of a linear system is the two-box model in Equation 17; in this case, system linearity

manifests as the dependent variables occurring only linearly in the differential equations. Note that system linearity

does not necessarily imply, nor is it implied by, a linear relationship between system variables. For further discussion
in the context of climate sensitivity, see Gregory et al. (2015).
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more on the connection between TCRE and the net zero paradigm for climate stabilization, see
the comprehensive review of Allen et al. (2022).

The second remarkable and policy-relevant finding from ESMs, also apparent in Figure 15, is
that temperatures roughly stabilize after CO; emissions cease. The change in temperature after
emissions cease is defined to be the ZEC, and the finding is thus that

ZEC ~ 0 10.

(Matthews & Caldeira 2008, Solomon et al. 2009, MacDougall et al. 2020). We calculate ZEC
for the simulation in Figure 15 as the difference between the final warming 75 (i.e., T averaged
over the past 100 years of the simulation) and the temperature at zero emissions 7. This yields
a ZEC for this scenario of roughly 0.2°C, which when normalized by T is less than 0.1 and thus
consistent with Equation 10.

Like the TCRE, ZEC varies across models but is typically small comparable to T, and quite
close to zero when averaged across models, with an assessed value of ZEC = 0 £ 0.19°C (likely
range) (MacDougall et al. 2020, Canadell et al. 2021).% A near-zero ZEC is critical for the net zero
and carbon budget paradigms, as a significantly nonzero ZEC would have to be accounted for in
addition to Cepi in aiming to keep global warming below a given threshold (Rogelj et al. 2019).
For a more detailed review of ZEC and its policy implications, see the review of Palazzo Corner
etal. (2023).

What is the relationship between zero ZEC and constant TCRE? If surface temperature re-
sponds linearly to emissions (see the sidebar titled System Linearity), then these two phenomena
are actually equivalent. To see this, we first note that Equation 10 holds for a variety of emissions
profiles, including scenarios where an instantaneous pulse of carbon is emitted into the atmosphere
(Matthews & Caldeira 2008, Matthews et al. 2009). We thus may approximate the temperature
response to a unit emissions pulse as a step function AH(¢), where H(¢) is the unit step function.
The response to an arbitrary emissions time series E(¢) can then be obtained by integrating E()
against this impulse response, i.e.,

T®k) = /:E(t’)A’H(t —t)dt’ = A Conie(t), 11.

reproducing Equation 9. The validity of this argument and the mechanisms behind ZEC and
constant T'CRE are discussed further in Section 6.

8This value of ZEC is assessed 50 years after emissions cease, for a scenario with final Cemie= 1,000 GtC
(MacDougall et al. 2020). For an analysis of ZEC on equilibrium timescales, see Tarshish et al. (2023). Also
note that as in the IPCC ARG, we focus on the ZEC resulting from CO; forcing only; the behavior of ZEC
in the presence of additional forcing agents can differ somewhat (Tarshish et al. 2023).
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3. NEW PERSPECTIVES ON FORCING AND FEEDBACK

Having now surveyed the climate sensitivity hierarchy of Table 1, we spend the remainder of
this article focusing on more specific topics related to each climate sensitivity measure. For Cess
sensitivity and ECS, the key quantities are forcing and feedback, which we discuss in this section.
Sherwood et al. (2020) provide a comprehensive review of those topics; here, we focus on a handful
of recent developments, including in particular new analytical models for describing forcing and
feedback in clear skies (Jeevanjee 2023, Koll et al. 2023, Stevens & Kluft 2023). We also discuss
recent progress in assessing cloud feedbacks and the role these play in the pattern effect.

3.1. Forcing

The concept of radiative forcing has evolved considerably over time (Ramaswamy et al. 2019).
The radiative forcing described in Equation 2 is instantaneous radiative forcing (IRF), obtained
as the change in N when CO, (or other forcing agent; see the sidebar titled Non-CO; Forc-
ing Agents) concentrations are changed and all other climate variables (surface and atmospheric
temperatures, humidity, cloudiness, etc.) are held fixed. In the case of CO, forcing, it was found
that the stratosphere cools in response to increased CO, (Manabe & Wetherald 1967, 1975),
quickly and independently of any changes in 7. This stratospheric adjustment then modifies the
forcing felt by the tightly coupled surface-troposphere system (Houghton et al. 1994, Hansen
et al. 1997). Subsequently it was understood that other elements of the climate system, especially
clouds, also respond directly to changes in forcing agent concentrations independently of changes
in Ty, and these other rapid adjustments also modify the forcing (Sherwood et al. 2015). This led
to the concept of effective radiative forcing (ERF), which includes all these adjustments and is
typically calculated by running fixed-SST AGCM experiments, changing the CO, (or other forc-
ing agent) concentration, and calculating the corresponding change in N (Hansen et al. 2005).
For CO, the ERF is similar to the stratosphere-adjusted forcing, with a longtime estimate of
roughly %>, ~ 4 W/m? from benchmark calculations (Charney et al. 1979, Houghton et al. 1994,
Sherwood et al. 2020).

In addition to longstanding confidence in the magnitude of 75, there has been recent progress
in our understanding of CO, forcing, driven largely by a simple analytical model for clear-sky CO,
IRF (Wilson & Gea-Banacloche 2012):

F = 2110 (%) (B, T = w80, T 12,

qi

Here / = 10.2cm™! is a spectroscopic constant, B is the Planck distribution in wavenumber
space (wavenumber v is defined as inverse wavelength, with unit cm™!), vo = 667.5 cm™! is the
wavenumber at CO; band center, and 7y, is the emission temperature for wavenumbers near vy,
which emit from the stratosphere. For a pedagogical derivation and discussion of Equation 12, see
Jeevanjee (2023). Note that Equation 12 applies only in the absence of water vapor but has been
generalized to account for spectral overlap between H,O and CO, (Jeevanjee et al. 2021b).

Equation 12 has found several applications. Jeevanjee et al. (2021b) used it to explain the merid-
ional gradient in CO, forcing. Seeley (2018) and later Romps et al. (2022) used it to establish the
origin of the logarithmic scaling of CO, forcing, evident in the In(g¢/¢;) factor in Equation 12.
He et al. (2023) showed that the 7 and Ty, dependence in Equation 12 implies a nonnegligi-
ble state dependence of F, which also explains a significant amount of intermodel spread in 7.
Wordsworth et al. (2024) deepened our understanding of Equation 12 by deriving the value of the
spectroscopic constant / from quantum-mechanical first principles.

As noted above, however, Equation 12 is only an expression for clear-sky CO; IRF. An extension
to the all-sky case is clearly desirable, as is a deeper understanding of the stratospheric adjustment.
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NON-CO; FORCING AGENTS

Although CO; is the primary driver of present-day global warming, many other forcing agents contribute signifi-
cantly to present-day and historical forcing. Most notable among these are other greenhouse gases such as methane,
as well as aerosols such as sulfates, which provide a net negative forcing (Smith et al. 2020, Forster etal. 2021, Szopa
etal.2021).

The forcing-feedback framework assumes that all forcing agents give rise to the same global mean 7 response
per unit forcing. But given that some forcing agents such as aerosols are so short-lived that they are not well-
mixed by the atmosphere, this is by no means obvious. This question has led to the notion of forcing efficacy, which
measures the 7 response to forcing from a given agent relative to that from an equal forcing from CO, (Hansen etal.
2005). Recent research suggests that models do on average exhibit forcing efficacies close to unity for most forcing
agents, but for aerosols some models can exhibit nonunit efficacies (Richardson et al. 2019, Myhre et al. 2024).

Note that aerosol forcing consists of two components: the direct effect of scattering and absorption by the
aerosols themselves and the indirect effect of aerosols on clouds as many aerosols serve as cloud condensation
nuclei. In particular, the aerosol indirect effect is not well-understood, leading to uncertainties in present-day
aerosol forcing that hamper efforts to constrain sensitivity metrics from present-day warming (Forster 2016,
Bellouin et al. 2020).

The latter could lead to a model for CO, ERF, although other adjustments also exist, particularly

cloud adjustments (Andrews et al. 2012a, Kamae et al. 2015).

3.2. The Planck Response and Its Drawbacks

We now turn to the feedback parameter A. Again, Sherwood et al. (2020) provide a compre-

hensive resource, basing their approach on the conventional decomposition of A into the Planck
response as well as water vapor, lapse rate, surface albedo, and cloud feedbacks, with detailed as-
sessments of each (see also the comprehensive review of the water vapor and lapse rate feedbacks in
Colman & Soden 2021). In this approach, the Planck response, defined as the change in N due

to a uniform warming of the surface and atmosphere while holding specific humidity fixed, is the

reference response or null hypothesis for the climate response to warming, relative to which all
other feedbacks are evaluated (Roe 2009). This conventional Planck feedback can be estimated by
differentiating the Stefan—Boltzmann law with respect to a global average emission temperature

Tem satisfying OLR = o7}

em?

yielding

~ 3
Areference = Aplanck ~ —40T,

em

(Cronin & Dutta 2023). But the assumption of fixed specific (rather than relative) humidity in
the Planck response is unphysical and leads to spurious intermodel spread, correlations, and

cancellations among the other feedbacks (Held & Shell 2012, Caldwell et al. 2016, Jeevanjee
et al. 2021a). Assuming fixed relative humidity (RH) instead largely ameliorates these issues
(Held & Shell 2012, Ingram 2013), but this fixed RH Planck response still assumes that high
clouds warm in response to surface warming, contradicting the theoretically and observationally

supported fixed anvil temperature hypothesis (discussed below). These drawbacks have motivated

(defined in the next section) rather than the Planck response as the basis for feedback analysis.
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3.3. The Longwave Clear-Sky Feedback

Analogous to Equation 3, the LWCS feedback is defined as the negative change in clear-sky OLR
with surface temperature:

dOLR

dT,
The clear-sky OLR is the OLR one would observe in the absence of clouds and can be computed
in models as well as estimated from satellite observations, as referenced below.

)\L\/VCS = — 14

By definition Apywcs excludes all effects from clouds but includes the effects from changes
in water vapor and atmospheric temperature that conventionally have been encapsulated in the
Planck, water vapor, and lapse rate feedbacks. Despite some uncertainty in these latter feed-
backs, however, Apwcs itself is remarkably robust: Recent work has consistently found values of
Atwes ~ 2 W/m? /K, with an uncertainty of roughly 10% or so, across a hierarchy of models and
observations (e.g., Koll & Cronin 2018, Zhang et al. 2020, Roemer et al. 2023). Such robustness
suggests a relatively simple underlying mechanism, discussed below. That Aywcs is reasonably
well-constrained and understood also makes it an apt starting point for feedback analyses, while
also avoiding the drawbacks of the conventional Planck/lapse rate/water vapor decomposition.

The single-column model of Koll & Cronin (2018) suggested that Ajywcs originates physically
from the increase in surface radiation escaping to space through the transparent water vapor in-
frared window, consisting of wavenumbers between roughly 800 and 1,200 cm~!. The rest of the
LW spectrum is dominated by atmospheric emission from H,O, which turns out to be fairly in-
sensitive to 7, a fact sometimes referred to as Simpson’s law (Ingram 2010, Koll & Cronin 2018,
Jeevanjee et al. 2021a). Indeed, simply integrating the derivative of the Planck function across the
water vapor window reproduces the expected value:

1200 em™!
ALwes A — / b4
8

00 cm—1!

IB(v, 1)
T

(Jeevanjee 2023, Stevens & Kluft 2023). Of course, this estimate is crude and more detailed analy-

dv ~ =2 W/m?/K 15.

ses show that this surface feedback term makes up about two-thirds of Apycs, with the remainder
emanating from the atmosphere (Feng et al. 2023, Koll et al. 2023). Nevertheless, Equation 15
remains a useful heuristic for understanding Apwcs.

3.4. Cloud Feedbacks

In contrast to the robustness of the LWCS feedback, cloud feedbacks have long exhibited a large
spread among GCMs, where even the sign of the net cloud feedback was long unknown (Zelinka
etal. 2017). This has made cloud feedbacks an active area of research, and we highlight only a few
salient points here. For thorough reviews, see Ceppi et al. (2017) and Sherwood et al. (2020) and
the recent textbook by Siebesma et al. (2020).

Happily, recent years have seen a significant narrowing of the uncertainty in cloud feedbacks,
due largely to the identification of large-scale cloud-controlling factors (such as local SST and at-
mospheric inversion strength) as independent variables for cloud radiative effects (Klein et al.
2017). Methodologies based on these variables have reduced uncertainty and increased confi-
dence in a positive cloud feedback, driven largely by reduced shortwave reflection from marine
low clouds (Zelinka et al. 2017, Ceppi & Nowack 2021, Myers et al. 2021).

Another significant cloud feedback stems from the high anvil clouds sitting atop thunderstorms,
which tend toward higher altitudes with global warming so as to maintain a fixed cloud-top tem-
perature, a fact known as the fixed anvil temperature or FAT hypothesis (Hartmann & Larson
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2002, Thompson et al. 2017). This is interpreted in the conventional formalism as a positive feed-
back (even though the cloud-top longwave emission is unchanged), which is again an unphysical
artifact of the Planck response (Yoshimori et al. 2020). This has motivated an alternative feedback
decomposition in which the reference response is simply Apwcs, reduced by a factor that accounts
for the masking of the clear-sky feedback by high clouds, whose thermal emission does not change
and that cover a fraction fpign of the domain:

Areference = (1 - ﬁﬁgh))\LVVCS 16.

(Jeevanjee 2023, Stevens & Kluft 2023, McKim et al. 2024).° Such a framework has yet to be fully
explored but already has the advantage of encoding our current understanding in the reference
response; any additional feedback terms then truly represent processes we do not understand well
and that are worth isolating (Roe 2009).

3.5. The Pattern Effect

As mentioned in Sections 1 and 2.1, over the past decade the importance of the spatial pattern
of SST changes on climate sensitivity has become apparent, in that A has been found to depend
rather significantly on the pattern of surface temperature change (Armour et al. 2013, Andrews
etal. 2015, Gregory & Andrews 2016) (see also Equation 5).

This pattern effect is illustrated in Figure 2, which shows the spatial pattern of AT (x) and
AN(x) (normalized by global mean AT;) over three different periods of the GFDL CM3 simu-
lation from Figure 1a. Over years 1-70, the warming is enhanced over land (relative to ocean)
and over the Arctic relative to the rest of the globe, with suppressed warming over Antarctica and
the Southern Ocean.!” The later periods, and especially the last, show the Southern Hemisphere
catching up, with warming now enhanced over Antarctica and the Southern Ocean. Most models
also show enhanced warming over the Eastern Pacific relative to the west in later periods (Andrews
etal. 2015), although this effect is not pronounced in CM3.

These variations in the SST pattern of warming give rise to cloud and other feedbacks that grow
more positive over time, largely in the tropical Pacific and Southern Oceans (Ceppi & Gregory
2017). Indeed, a trend in Southern Ocean feedbacks can be seen in Figure 2d—f. The impact on A,
which is simply the global mean of AN(x)/ AT, can be quite significant; in Figure 2, A varies by a
factor of two between the first and last period. This shows that one must distinguish between the
equilibrium feedback parameter A.q that satisfies Equation 6 and a transient feedback parameter
A calculated in a transient scenario (Rugenstein & Armour 2021), such as the 1% /year period
shown in Figure 24,d.!!

A further complication due to the pattern effect is that historical AOGCM simulations are
largely unable to match the observed pattern of warming, especially since 1980 or so (Wills et al.
2022). The disagreement in SST patterns is mostly in the Eastern Pacific and Southern Ocean,
where as discussed above feedbacks (in particular cloud feedbacks) can vary significantly. Thus,

%In this framework, the impact of clouds on A manifests as changes in cloud radiative effect, which are not the
same things as cloud feedbacks (Soden et al. 2004) but have the advantage of being observable (Siebesma et al.
2020).

10T hese patterns are hallmarks of global warming and were predicted by our earliest climate models before
they were observed, providing confidence in model projections (Manabe & Stouffer 1980, Manabe et al. 1991,
Stouffer & Manabe 2017).

This time dependence of the feedback parameter can equivalently be cast in terms of an ocean heat uptake
efficacy, analogous to forcing efficacy where ocean heat uptake is thought of as a forcing on the ocean mixed
layer as in Figure 3 (see Winton et al. 2010, Geoffroy et al. 2013a, Rose & Rayborn 2016).
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The two-box model

hp=50-100 m MIXED LAYER

1
—o—

(- Tg)

hg=2,500 m DEEP OCEAN

Figure 3

The ocean mixed layer responds to forcing F with a temperature anomaly 7§, which causes a change |A|7; in
net radiation to space as well as heat export to the deep ocean as y(T; — Ty). Characteristic values for the
mixed layer and deep ocean depths are by &~ 50-100 m and 4y &~ 2,500 m, where the latter is the globally
averaged ocean depth.

the real world can exhibit a historical feedback parameter Ay, that is different from both modeled
Aw and Agq, purely due to the pattern effect (Andrews et al. 2022, Armour et al. 2024). It is unclear
whether the current A, is a product of internal variability and might gradually resemble modeled
Aw with time, or if instead the discrepancy between Ay, and modeled A, represents basic errors
in the transient response of AOGCMs to radiative forcing. This question makes the pattern effect
a major source of uncertainty in climate projections and an important problem for the field (Lee
etal. 2022, Rugenstein et al. 2023, Watanabe et al. 2024).

4. MIXED-LAYER QUASI-EQUILIBRIUM AND THE TRANSIENT
CLIMATE RESPONSE

Having surveyed forcing and feedback, the key ingredients of ECS (Equation 6), we now turn our
attention to transient measures of climate sensitivity such as TCR and TCRE. In doing so we also
shift our focus somewhat, from reviewing established frameworks and recent work to highlighting
ideas and phenomena that call for greater exploration.

As noted in Section 2.3, ocean heat uptake plays a key role in transient climate change. A
useful theoretical framework for ocean heat uptake and transient climate change is the two-box
model (Held et al. 2010, Geoffroy et al. 2013b), which we introduce here. This model consists of a
shallow, mixed-layer ocean of heat capacity C; (J/m?*/K) and temperature anomaly 7} coupled to
a much larger deep ocean with heat capacity Cy > C; and temperature anomaly 7. The radiative
forcing F and increased radiation to space |A|7; are, respectively, absorbed and emanated by the
mixed layer, which also exports energy to the deep ocean in linearized form as y(7; — Ty). Here
7 is again the deep ocean heat uptake coefficient in W/m?/K. This model is pictured in Figure 3,
and the corresponding equations are

JT,

) 17a.
T

T VA 1) 17b.
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A key property of these equations is that the response timescales of 75 and Ty differ markedly,
due to the difference in C; and Cy (which stems from the difference in globally averaged mixed
layer and deep ocean depth, roughly by, ~ 50—100m and 4, ~ 2,500 m). Indeed, a preliminary
analysis shows that these timescales can be estimated as'?

C;
Ts = A 3—6 years 18a.
Y+ Al
Y+ 1Al
=C ~ 700 years. 18b.
RDY Y

If the system is driven by a forcing F(¢) that is monotonic over timescales longer than T, and
shorter than T, (i.e., multi-decadal), one can make the approximations C; = 0 and Cy = oo, which
yield a mixed layer in quasi-equilibrium (%% = 0) with a deep ocean that has not yet responded
(T4 = 0). In such a mixed-layer quasi-equilibrium (MLQE), the ocean heat uptake is simply y7;
(as in Equation 7) and Equation 17a implies that the arrows going into and out of the mixed layer
in Figure 3 must balance, hence

f
T, ~ (MLQE). 19.
Y +IAl
This simple equation suggests that for transient scenarios in which F varies on multi-decadal

timescales, temperature should be proportional to forcing (Gregory & Forster 2008). This should

apply to historical warming as well as 1% /year scenarios and in particular should apply to the
definition of TCR as the warming at year 70. Applying Equation 19 to this instance then yields
the expression for TCR previously quoted in Equation 8:
Fax

Y+l
If we now combine Equations 19 and 20, we find that we can estimate transient warming in any
scenario for which MLQE holds by scaling the TCR by the time-dependent forcing F(z):

F@)

2x

TCR ~ 20.

T,(@t) ~ TCR. 21.

This scaling has been noted before (Gregory & Forster 2008) and utilized in observational
estimates of ECS and TCR (e.g., Otto et al. 2013), but its general validity has not been fully ex-
amined or emphasized. Here, we illustrate both the proportionality (Equation 19) and the TCR
scaling (Equation 21) for the GFDL CM4 coupled model (Held et al. 2019). Figure 4 scatter-
plots annual mean, global mean F(¢) against 7,(¢) for various scenarios, including historical runs
extended to 2100 via the SSP2-4.5 scenario (O’Neill et al. 2016) with differing forcing agents, as
well as for a 1pctCO?2 scenario extended to 140 years to quadrupled CO,. Forcing time series are
ERF calculated from fixed-SST simulations (Section 3.1), whereas T;() is drawn from the usual
coupled simulations. The straight line in Figure 4 also shows the scaling (Equation 21), using
GFDL CM#4’s characteristic values of 53, = 4 W/m? and TCR = 2 K (Winton et al. 2020).

Almost all the simulation data in Figure 4 collapse onto the same quasi-linear curve, includ-
ing that from the HIS-AER simulation (aerosol only, green dots), which includes only negative

2For a derivation of Equation 18, see Jeevanjee (2023). To evaluate Equation 18, we set Cs = p,,Cyyh,y and
Cy = pwCuhy, where p,, = 1,024 kg/m? and C,, = 3,850]/kg/K are the density and specific heat of seawater,
respectively. We also take typical values of [A| = 1.3 W/m? /K (Sherwood et al. 2020) and vy = 0.7 W/m? /K
(Geoffroy et al. 2013b).
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The proportionality of temperature to forcing in GFDL CM4
CM4 historical/SSP2-4.5 and 1pctCO2
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Figure 4

Testing the proportionality of temperature to forcing for GFDL CM4, for variants of the historical/
SSP2-4.5 scenario as well as a 1pctCO2 scenario run to 4XCO2 (colored and black dots, annual and global
means), along with the scaling (Equation 21) (red /ine). The HIS-ALL scenario includes all forcing agents
(anthropogenic and natural), HIS-GHG includes only greenhouse gases, and HIS-AER includes only
aerosol forcing. The scaling (Equation 21) provides a reasonable approximation to the simulated evolution
over multi-decadal timescales, with some deviation at later times and larger amounts of warming.
Abbreviation: GFDL, Geophysical Fluid Dynamics Laboratory.

forcing and temperature perturbations. Furthermore, the TCR scaling (Equation 21) provides a
reasonable estimate of this curve, especially for forcings less than 5 W/m? or so. Beyond that the
MLQE approximation breaks down, largely due to the pattern effect and nonnegligible warming
of the deep ocean and its impacts on ocean heat uptake (Equation 22) (Gregory et al. 2015).1* The
scaling (Equation 21) thus suggests that for near-term transient warming, a projection of 7 (¢) and
knowledge of TCR are sufficient to project global warming, underscoring the utility of TCR.

5. ON THE CURVATURE OF OCEAN HEAT UPTAKE
AND LIMITATIONS OF THE TWO-BOX MODEL

The last section highlighted the utility of the MLQE approximation and T'CR in describing tran-
sient warming on multi-decadal timescales. But, the MLQE approximation (Equation 19) assumes
C4 = oo and hence Ty = 0, assumptions that must break down over longer timescales. If we instead
utilize the deep-layer version of the two-box model (Gregory et al. 2015) in which we keep C; =
0 but now allow Cjy to be finite, so that the mixed layer is always in quasi-equilibrium but with a

315 the HIS-ALL case, one can also see a few black dots at low T} values that deviate from the linear scaling;
these are precisely the years of large volcanic eruptions whose forcings dissipate on timescales shorter than
and whose climate response is therefore not expected to obey the MLQE relation (Equation 19) (Gregory &
Forster 2008).
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deep ocean whose temperature Ty is nonzero and evolving, Equation 17a then yields

_ vl

s = deep-layer model). 22.
Al +v (deep-lay ‘

This implies that 7 increases supralinearly with F, contributing to the curvature in Figure 4.
Indeed, Geoffroy et al. (2013b) accurately fit the full two-box model (Equation 17) to an ensemble
of 150-year abruptd4x and 1pctCO2 simulations, largely capturing the curvature in T versus F
(or equivalently time) for the 1pctCO2 simulations. Thus, the full two-box model seems able
to accurately capture the evolution of Ty and hence ocean heat uptake in AOGCMs, at least on
150-year timescales.

But the validity of the two-box model on longer timescales remains relatively unexplored. The
deep ocean timescales diagnosed by Geoffroy et al. (2013b) of roughly 250 years are short rela-
tive to the simple estimate of 700 years from Equation 18b, which may simply be a consequence
of fitting to 150-year simulations. Here, we use much longer millennial abrupt4x simulations
from LongRunMIP (Rugenstein et al. 2020) to further probe the ability of the two-box model
to emulate deep ocean heat uptake.

We aim to compare the predictions of the deep-layer model with LongRunMIP abrupt4x
output of 7T, and net TOA energy imbalance N. To that end, we note that in the deep-layer model,

N=y(T- Ty =G, .
dt
so the entire global energy imbalance resides in the deep ocean. Integrating Equation 23 over
Earth’s area and over time then yields two expressions for the total ocean heat content (OHC), in
Joules:

OHC(@) = AEmh/ N@)dt' 24a.
0

= CwMocean’Td- 24b.

Here Aparn, = 5.1 x 101 m? is the area of Earth, Mycean = 1.37 x 10! kg is the mass of the world
ocean, and C,, = 3,850 J/kg/K is the specific heat of seawater. Equation 24a allows us to calculate
OHC from simulated N, whereas Equation 24b allows us to relate OHC to the two-box model.
Note that in the two-box model under an abrupt4x scenario, the equilibrium values of both 7
and Ty are 2ECS, with a corresponding equilibrium OHC of OHC,q = 2 C,,Mce;n ECS (also see
the sidebar titled Differences Between ECS and Interior Ocean Warming).

DIFFERENCES BETWEEN ECS AND INTERIOR OCEAN WARMING

It is notable that for the fully equilibrated simulations in Figure 5 (CESM1, GISSE2R, and MPI-ESM1.1), the
equilibrated OHC is 10-25% less than the ECS-based estimate OHC,,. Because ECS is evaluated using global
mean near-surface air temperature, this discrepancy can be attributed to multiple drivers, including land warming
more than ocean (Sutton et al. 2007) and oceanic near-surface air warming more than the underlying SSTs (Cowtan
et al. 2015). Furthermore, abyssal ocean warming can be suppressed relative to SST warming even in equilibrium
by continued deep water formation, which varies across models: Some models show fairly uniform equilibrium
warming with depth (Li et al. 2013), while others exhibit significantly suppressed warming at depth, which can be
modulated by varying ocean mixing parameters (Krasting et al. 2018).
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The curvature of ocean heat uptake
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Normalized OHC versus normalized 7T for LongRunMIP abrupt-4xCO2 simulations from various models (colored dots; colors indicate
simulation year per the color bar in the Jower right). Also shown is the straight line two-box model prediction (25) (thick dashed line), with
x-intercept of TCR/ECS (left-hand thin dashed line in each panel). Many models display significant curvature in this measure of ocean

heat uptake, in contrast to the straight line two-box prediction. Abbreviation: OHC, ocean heat content.

Normalizing 7; and OHC by these equilibrium values, differentiating Equation 24b with
respect to T, and invoking Equations 6, 8, and 22, one obtains after some manipulation

d(OHC/OHC,)  dT; 1
T eq) 44 25.
d(T./2ECS) aT, ~ 1- I

Note that dTy/dT; > 1 because both T, and Ty must approach the same value at equilibrium,
but 7 gets a head start in the first 5-10 years due to its rapid quasi-equilibration, so Ty must
subsequently warm faster than 7.

Figure 5 shows normalized OHC versus 7; as simulated by various LongRunMIP models,
where TCR and ECS values for each model are obtained from the literature (e.g., Meehl et al.
2020, Nijsse et al. 2020). For models with runs longer than 4,000 years, however, we take 2ECS
as the average T; over the last 500 years of the run. Equation 25 predicts that normalized OHC
versus 7 is a straight line with slope 1/(1 — TCR/ECS), shown in the thick dashed line, with
x-intercept of TCR/ECS (left-hand thin dashed line in each panel). While some models have an
evolution similar to this straight line (e.g., CCSM3 and GISSE2R), it is evident that many models
display significant curvature in their deep ocean heat uptake, including models whose slope of
simulated OHC versus 7§ can be much steeper than the two-box prediction (e.g., CNRMCMO6).
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In such models, the deep ocean can warm with very little impact on 75 (as also found in, e.g., Li
et al. 2013, Krasting et al. 2018). It would be of interest to see if diffusive models (e.g., Harvey
2018) or the more elaborate model of Marshall & Zanna (2014) is better able to capture this
phenomenon.'* In either case, the diversity of this ocean heat uptake curvature among models
and its general incongruence with the two-box model indicate that there is still much to learn
about ocean heat uptake.

6. UNDERSTANDING TRANSIENT CLIMATE RESPONSE TO
CUMULATIVE EMISSIONS AND ZERO EMISSIONS COMMITMENT

We now turn to the two final rungs of Table 1 concerning the sensitivity of Earth’s climate to
CO, emissions rather than concentrations.

Recall from Section 2.4 that the TCRE is defined as the ratio of surface temperature change
T, to cumulative emissions Cepy, and that constant TCRE actually follows from ZEC = 0 by
Equation 11, assuming system linearity. Figure 15 showed that 7 is indeed proportional to Cep;
in GFDL ESM4.1 for a given emissions scenario of E = 14 GtC/year; now we examine whether
this holds true for additional emissions scenarios of 10 GtC/year and 1pctCO2. (In the latter
simulation, emissions are adjusted online to ensure that CO; concentrations rise as prescribed.)

Figure 64 shows the emissions trajectories Cemic(f). The corresponding temperature trajecto-
ries T,(?), shown in Figure 6c, track the emissions trajectories quite closely. Accordingly, plotting
T, versus Cepi; in Figure 6d then collapses the various scenarios onto a fairly straight line whose
slope is the TCRE of roughly 1.4 K/(1,000 GtC) (cf. Figure 15).

Why does this collapse occur? From Equation 19 and Figure 4, we already expect a rough pro-
portionality between temperature and forcing. How does this extend to a proportionality between
temperature and (cumulative) emissions? The ratio of CO, concentrations appearing in the CO,
forcing expression (Equation 12) can be related to cumulative emissions Cemi as

ﬁ _ C() + O(‘Cemit, 2.

qi Co
where Cy = 590 GtC is the preindustrial atmospheric CO, mass'’ and o is the airborne fraction,
i.e., the fraction of Cyyy;; that still resides in the atmosphere at a given time. The airborne fraction
is thus the key degree of freedom relating Cepie and forcing, and hence it is a key parameter in
determining TCRE. Indeed, if we calculate TCRE at the time of doubling in an ESM 1pctCO2
simulation (Gillett et al. 2013), then 7; = T'CR and &C,,;; = C; and we have

o
A= aTCR. 27.

This formula, also recorded in Table 1, shows that TCRE is determined directly by o and TCR.
Equation 27 was also used by the IPCC to estimate A: Indeed, invoking their central estimates
of TCR = 1.8°C and « = 0.53 yields a value almost identical to their previously quoted value of
A = 1.65K/(1,000 GtC) (Canadell et al. 2021).

Returning to the question of the collapse in Figure 6d, we substitute Equation 26 into
the forcing expression (Equation 12) and substitute that into the approximate T'CR scaling

4Note that the pattern effect cannot account for this curvature, as Equation 25 shows that Aeql < |Awr| makes
TCR/ECS smaller and hence the slope d7y/dT shallower, not steeper. On another note, it is worth remarking
that diffusive models of ocean heat uptake also support the scaling (Equation 21); see https://www.gfdl.noaa.
gov/blog_held/51-the-simplest-diffusive-model- of-oceanic-heat-uptake-and-ter/.

15Obtainable as the preindustrial CO; concentration of 278 ppm multiplied by a standard conversion factor
of 2.124 GtC/ppm (Friedlingstein et al. 2020).
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(@) Cumulative emissions Cemie versus time for three scenarios (legend in upper right). (b) Airborne fraction « as a function of Cemit.
(¢) Temperature anomaly T versus time. (d) T versus Cemic. (¢) Ts as estimated from Equation 28. Temperature anomalies collapse
when plotted as a function of Cep;c in panel d. This collapse is roughly reproduced by the estimated 75 in panel e, thanks largely to
airborne fractions that do not vary dramatically in time or across scenario (panel b).

(Equation 21), yielding
In (1 + occz%g“
In2

(Allen & Stocker 2014). This estimate is shown in Figure 6e, computed using «(¢) from Figure 6b.
The estimated 7 curves (Figure 6e) resemble the simulated ones (Figure 6d) and also collapse
onto a common curve (albeit with more spread). According to Equation 28, this rough collapse can
be traced to the relative invariance of the airborne fraction o (Figure 6b), which exhibits typical
values of ~0.5 with variations of only £10% or so across time or emissions scenarios.'®

While Equation 28 is thus helpful in explaining the collapse of T((Cemir), the logarithmic
dependence on Cep; seems to contradict the linearity of T, with Ceyie (Equation 9). Indeed,

T ~ ) TCR 28.

16Note also that the fractional spread in estimated 75(Cemit) in Figure 6e is somewhat smaller than the
fractional spread in airborne fraction in Figure 6b, due to the logarithm in Equation 28.

www.annualreviews.org o A Holistic View of Climate Sensitivity 387



388

concavity from the logarithm is clearly evident in Figure 6e. Somehow, the logarithmic curvature
in Equation 28 ends up being rectified in the simulated 7T(Cep;;) in Figure 6d. But we already saw
in Equation 22 and Figure 4 that deep ocean warming contributes to curvature between F and
Ty, and this curvature ends up canceling the logarithmic curvature, yielding a fairly linear T,(Cemir)
(MacDougall & Friedlingstein 2015, MacDougall 2017).

The constancy of TCRE across time and scenarios thus seems to result from a few fortuitous
coincidences. This suggests that this constancy might fail under more extreme circumstances, such
as widely varying emissions rates (Krasting et al. 2014) and/or strong carbon-climate feedbacks,
such as permafrost carbon release (MacDougall & Friedlingstein 2015). The constancy of TCRE
also seems to hinge critically on the behavior of the airborne fraction, which in ESM4 displays
muted time and scenario dependence. These characteristics of « have been observed before (e.g.,
Gregory et al. 2009, Krasting et al. 2014, MacDougall & Friedlingstein 2015) but have been only
sporadically studied (Raupach 2013, Seshadri 2017).

Finally, how does the explanation for the constancy of TCRE given above square with the
discussion in Section 2.4, which derives a constant TCRE as a consequence of ZEC and linearity
of the system? The same logic that led to Equation 28 can also be used to derive an analogous
expression for the long-term ZEC shown in Figure 15, normalized by the temperature when
emissions are zeroed out T,. (Tarshish et al. 2023):

ZEC 1n(1+%e;m't) ECS
Te ~ In (1 + &gt ) TCR

—1. 29.

Here the airborne fraction again plays a key role, this time in the form of the final airborne frac-
tion'® o and the airborne fraction when emissions are zeroed c.. Taylor-expanding for intuition
yields
ZEC o/ 0t

T,, ~ TCR/ECS
In this approximation (also recorded in Table 1), normalized ZEC results from the balance be-
tween chemical disequilibrium o/, when emissions are zeroed and the thermal disequilibrium
TCR/ECS (Ehlert & Zickfeld 2017, Allen et al. 2022, Tarshish et al. 2023): If the chemical
disequilibrium is greater («¢/o,e < TCR/ECS), then CO, forcing will decline more than ocean

1. 30.

heat uptake as the system equilibrates, leading to post-emissions cooling. Conversely, a greater
thermal disequilibrium (TCR/ECS < ¢/ «,.) will lead to post-emissions warming.

Evidently, ZEC ~ 0 results from these disequilibria taking on similar values. Similar to the
constancy of TCRE, this seems not to be guaranteed but rather to result somewhat by chance
[and indeed, some models do exhibit nonnegligible ZEC (Frolicher et al. 2014, MacDougall et al.
2020)]. Whether the coincidences behind ZEC ~ 0 and constant TCRE are the same or dif-
ferent remains to be clarified. The assumption of system linearity underlying Equation 11 also
deserves scrutiny; relevant nonlinearities such as the logarithmic dependence of forcing on CO,
concentration as well as carbon-climate feedbacks certainly exist, but whether they add up to suf-
ficient nonlinearity to break the connection (Equation 11) between ZEC and constant TCRE is
unclear.

17A related body of literature suggests that carbon-climate feedbacks associated with ocean carbon uptake
also play a key role in this rectification (Goodwin et al. 2015, Williams et al. 2016), but how this relates to the
behavior of the airborne fraction is at present unclear (MacDougall 2016).

18The final airborne fraction can be evaluated analytically using the buffered carbon inventory approximation
of Goodwin et al. (2007), yielding estimates of around 0.2 (Tarshish et al. 2023). This estimate is in good
agreement with carbon cycle models (e.g., Archer & Brovkin 2008).
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7. OUTLOOK

We have now surveyed the climate sensitivity hierarchy of Table 1 in some detail. In addition to
reviewing progress in our understanding of forcing and feedback (Section 3), we have emphasized
that:

m The TCR is broadly applicable to contemporary climate change via Equation 21, thanks to
MLQE (Section 4).

m The shape of deep ocean heat uptake varies among models, in ways that the two-box model
cannot account for (Section 5).

m ZEC and constant TCRE are equivalent in the limit of system linearity (Equation 11), but
nonlinearities and apparent coincidences also play a role, complicating our understanding
of these quantities (Section 6).

A heretofore undiscussed aspect of Table 1 is the column of analytical expressions, which shows
that each sensitivity measure encompasses the previous ones. The forcing and feedback from ECS
are also part of the TCR; TCR is then itself part of TCRE. These sensitivity measures are thus all
interconnected, and in particular, uncertainties in a given measure then propagate down to more
complex measures. For example, uncertainties in TCR and ECS are relevant for uncertainty in
ZEC (Jones & Friedlingstein 2020, Matthews et al. 2020).

Another aspect highlighted by this column is the introduction of additional key parameters as
one increases complexity. Moving from ECS to TCR introduces the heat uptake coefficient y;
moving again from T'CR to TCRE then introduces the airborne fraction o. This simple observa-
tion suggests a path forward for our efforts: Just as much was learned through intense focus on 7,
and A, future progress may lie in a similar focus on y and «. Despite the demonstrable relevance of
TCR, TCRE, and ZEC for twenty-first-century climate change, there has been a relative dearth
of research on understanding the heat uptake coefficient and airborne fraction. For instance, while
we have analytical models that encapsulate some basic understanding of 7, and A (Equations 12
and 15) (see also Koll et al. 2023), no such understanding exists for y. Recent work is beginning
to generate new insight (e.g., Liu et al. 2023, Newsom et al. 2023, Gregory et al. 2024), but much
more is needed to even out our understanding. This is all the more true for airborne fraction,
where uncertainties in future land carbon uptake are notoriously large (Arora et al. 2020, Jones &
Friedlingstein 2020) and theoretical efforts have been few (Raupach 2013, Seshadri 2017).

As for ECS, given the complications of studying ECS in AOGCMs (Section 2.2), it may be
worth returning to the practice of simulating ECS with SOMs. Admittedly, the assumption of
fixed ocean heat flux convergence can be an unnatural one, particularly in regions of sea-ice retreat.
But from a global mean point of view focused on climate sensitivity, SOMs provide a convenient
method for assessing changes in ECS due to incremental model development (Gettelman et al.
2012, 2019) and are no less accurate at estimating ECS than extrapolation methods (Dunne et al.
2020b). Indeed, it may even be appropriate to reconsider ECS as primarily a property of SOMs,
useful as a modeling benchmark and an overall measure of global warming, rather than as a funda-
mental property of the Earth system that climate science must accurately pin down (see discussion
in Knutti & Rugenstein 2015, Dunne et al. 2020b, Meehl et al. 2020).

Finally, it is interesting to note that while TCR has a precise definition as the warming around
year 70 of 1pctCO2 simulations, and ECS has a precise definition (at least in principle) as equi-
librium warming due to a doubling of CO,, the same is not true for TCRE and ZEC. Standard
scenarios for calculating them have not been agreed upon, nor has the timescale over which ZEC
is assessed, so at present it is not possible to speak of the TCRE or ZEC for a given model.

The holistic view of climate sensitivity here presents a gauntlet for climate science; it has been
challenging enough to narrow the error bars on purely atmospheric forcing and feedback, let alone
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add in interactions with the ocean and carbon cycle. But for climate sensitivity to be relevant as
we project the future and assess the feasibility of our climate targets, such a holistic understanding
seems to be required.
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