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ABSTRACT: This study uses theory and numerical simulations to analyze the nondimensional spreading rate a (change
in radius with height) of buoyant thermals as they rise and entrain surrounding environmental fluid. A focus is on how a

varies with initial thermal aspect ratio Ar, defined as height divided by width of the initial buoyancy perturbation. An ana-
lytic equation for thermal ascent rate wt that depends on a is derived from the thermal-volume-averaged momentum bud-
get equation. The thermal top height when wt is maximum, defining a critical height zc, is inversely proportional to a. The
height zc also corresponds to the thermal top height when buoyant fluid along the thermal’s vertical axis is fully replaced
by entrained nonbuoyant environmental fluid rising from below the thermal. The time scale for this process is controlled
by the vertical velocity of parcels rising upward through the thermal’s core. This parcel vertical velocity is approximated
from Hill’s analytic spherical vortex, yielding an analytic inverse relation between a and Ar. Physically, this a–Ar relation is
connected to changes in circulation as Ar is modified. Numerical simulations of thermals with Ar varied from 0.5 to 2 give a
values close to the analytic theoretical relation, with a factor of ;3 decrease in a as Ar is increased from 0.5 to 2. The the-
ory also explains why a of initially spherical thermals from past laboratory and modeling studies is about 0.15. Overall, this
study provides a theoretical underpinning for understanding the entrainment behavior of thermals, relevant to buoyantly
driven atmospheric flows.

SIGNIFICANCE STATEMENT: Thermals, which are coherent, quasi-spherical regions of upward-moving buoyant
fluid, are a key feature of many convective atmospheric flows. The purpose of this study is to characterize how thermals
entrain surrounding fluid and spread out as they rise. We use theory and numerical modeling to explain why entrain-
ment rate decreases with an increase in the initial thermal aspect ratio}the ratio of height to width. This work also ex-
plains why the nondimensional spreading rate (change in thermal radius with height) of initially spherical thermals
from past laboratory and numerical modeling studies is about 0.15. Overall, this work provides a framework for concep-
tualizing the entrainment behavior of thermals and thus improved understanding of vertical transport in convective at-
mospheric flows.
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1. Introduction

Thermals}coherent, isolated, quasi-spherical regions of
upward-moving buoyant fluid}are a common feature of con-
vective atmospheric flows. A key characteristic of thermals is
the rate at which they increase in size as they ascend owing
to entrainment of the surrounding fluid. Assuming thermal
shape is self-similar (meaning that thermals do not change
shape over time), dimensional analysis shows that thermal ra-
dius R is proportional to thermal top height zt, that is, dR/dzt
is constant1 (e.g., Scorer 1957). (Note that all symbols used in

the paper are defined in the appendix.) Numerous laboratory
and numerical modeling studies have supported this basic
scaling (e.g., Scorer 1957; Richards 1961; Bond and Johari
2005; Zhao et al. 2013; Lai et al. 2015; Lecoanet and Jeevanjee
2019, hereinafter LJ2019; McKim et al. 2020; Morrison et al.
2021).

The rate of increase in R is closely related to the entrain-
ment rate of thermals. From LJ2019, a thermal net fractional
entrainment rate is defined as e ; d(lnV)/dzt, where V is the
thermal volume. Combined with self-similarity, this gives
e 5 3a/R, where a ; dR/dzt. We emphasize that e in this case
is a net fractional entrainment rate because thermal volume is
impacted by both entrainment (inflow of environmental fluid)
and detrainment (outflow of thermal fluid). However, LJ2019
showed that detrainment is negligible for both laminar and
turbulent dry, initially spherical thermals in a neutrally stable
environment. Thus, e provides a close approximation for total
entrainment in such conditions. An entrainment efficiency can
also be defined as e ; eR, which gives e 5 3a for self-similar
thermals.Corresponding author: HughMorrison, morrison@ucar.edu

1 Note that constant dR/dzt following self-similarity and dimen-
sional analysis is valid when there are no other physical length
scales. It follows that this scaling applies to dry thermals in an un-
stratified environment within an infinite domain.
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Thermals entrain by a process of drawing in fluid mainly
from below the thermal (e.g., LJ2019; Zhao et al. 2013;
McKim et al. 2020; Morrison et al. 2021). As a thermal spins
up, buoyancy becomes concentrated near the center of rotation
in the thermal’s toroidal circulation (i.e., vortex ring core); see
Fig. 1 for a schematic of thermal structure. As a result, there is
baroclinic generation of buoyancy on the outside edge of the
vortex ring and destruction on the inside edge that lead to a
spreading of the vortex (McKim et al. 2020). Moreover, with-
out buoyant fluid present along the thermal’s vertical axis,
circulation is nearly constant. This implies a basic constraint
on the spreading rate of thermals following the principle of
momentum conservation (Turner 1957). Specifically, buoyant
vortex rings (which form the core of thermals) must expand
over time to conserve momentum, with the rate of spread de-
termined by the thermal-integrated buoyant forcing and the
circulation. McKim et al. (2020) combined the buoyant vor-
tex ring argument of Turner (1957) with the thermal’s verti-
cal momentum equation to derive an analytic model for the
vertical velocity of thermal top wt, R, and buoyancy B at any
time past spinup that does not rely on empirically determined
parameters, provided wt, R, and B are known at the time
when the thermal is spun up.

While the basic mechanism of thermal entrainment and
spreading is well understood, factors controlling the spreading
rate are not. Lai et al. (2015) combined a relation between cir-
culation, impulse (related to time-integrated buoyant forcing),
and thermal spreading rate with an empirical power-law rela-
tion between normalized circulation and initial thermal aspect
ratio Ar to predict a from Ar. They showed that variations in
Ar for spheroidal thermals from ;0.5 to 2 lead to substantial
variability in a, from about 0.1 to 0.3. These results are consis-
tent with laboratory experiments reporting a similar range of
a (e.g., Scorer 1957; Escudier and Maxworthy 1973; Bond and
Johari 2005, 2010; Zhao et al. 2013). A consensus from labora-
tory and numerical modeling studies is that a ’ 0.12–0.18 for
initially spherical thermals in an unstratified environment (e.g.,
LJ2019; Bond and Johari 2010; Zhao et al. 2013; Lai et al. 2015).
Values are ;0.2–0.3 for initially oblate thermals with Ar , 1
and smaller for prolate thermals with Ar . 1, ;0.1–0.15 (see
Fig. 17 of Lai et al. 2015). There is little sensitivity of a to initial
aspect ratio for Ar . 2 (Bond and Johari 2005). Modifying
other aspects of thermal initial conditions can also produce
variability in a, such as having an initial circulation (Escudier
and Maxworthy 1973). Note that a may also depend on the
Reynolds number Re of the flow, although LJ2019 showed
with direct numerical simulation (DNS) that the basic mecha-
nism of entrainment is the same for laminar and turbulent
thermals (Re of 630 and 6300, respectively), and a was only
;20% higher for turbulent thermals. Their results indicate
that turbulence is not necessary for entrainment and that the
primary mechanism for entrainment is organized inflow con-
trolled by the thermal’s buoyancy distribution.

The above discussion raises two important science ques-
tions. First, why do initially spherical thermals in an unstrati-
fied environment (and initially motionless) have a ’ 0.15?
Why this particular value, and what are the physical mecha-
nisms explaining it? Second, why does the spreading rate of

thermals as they rise (a) increase as their initial aspect (Ar) is
decreased? To our knowledge, all previous studies have relied
in some way on empirical constraint to obtain parameters,
from either laboratory experiments or numerical modeling, at
least during the spinup phase which is crucial for predicting a.
In this study, we derive an expression for a as a function of Ar

that does not rely on such empirically determined parameters.
The goal is to predict a from Ar from the basic equations to
provide a theoretical underpinning for understanding factors
controlling the thermal spreading rate. The predicted values
of a are compared to those obtained from numerical simula-
tions of thermals over a range of Ar.

In the theoretical part, we first derive an analytic expression
for thermal ascent rate wt from the nondimensional thermal
momentum budget equation. We then use this expression to
derive an analytic relation between a and the thermal spinup
height zc (defined as the thermal top height when wt reaches a
maximum), valid over a range of initial thermal aspect ratios.
We show that zc also corresponds to the time for parcels ini-
tially near the thermal bottom to ascend through the thermal
core to near the thermal top. This determines the time for
buoyancy to be removed from the central thermal core by en-
trainment of nonbuoyant environmental fluid, after which cir-
culation is nearly constant. This time scale for thermal spinup
depends linearly on Ar and is determined by the thermal’s in-
ternal flow structure which is well modeled by Hill’s analytic

FIG. 1. Schematic diagram of a vertical cross section through the
thermal center. The central vertical axis is indicated by the dashed
line. Red X symbols mark the center of circulation comprising the
vortex ring core with radius Ry. After spinup, the region of nonzero
buoyancy indicated by blue shading is confined to the vortex ring
core. Baroclinic generation and destruction of vorticity associated
with this buoyancy structure leads to outward spreading of the
vortex ring structure and thermal as a whole as shown by the red
arrows. Black curved lines illustrate streamfunction isolines (only
shown for the right half of the thermal). The thermal boundary,
which is also a streamfunction isoline, is indicated by the curved
blue line. This boundary also defines the thermal radius R.
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spherical vortex (Hill 1894) even for nonspherical thermals.
We show that the predicted values of wt, a, and zc are consis-
tent with numerical simulations of buoyant thermals over a
range of Ar from 0.5 to 2.

The paper is organized as follows. Section 2 provides a the-
oretical description of the problem and derivation of equations
forwt and a. Section 3 gives a description of the numerical model
and experimental design. Section 4 presents results from the nu-
merical simulations and comparison of these results with theory.
A summary and conclusions are given in section 5.

2. Theoretical description

We first write the basic governing equations that set the stage
for the rest of the derivation. These are the incompressible
Boussinesq–Euler equations for fluid motion and mass continu-
ity plus the conservation equation for perturbation fluid density:

­u

­t
1 u ? =u 52r21

0 =p 2
r′

r0
gk̂, (1)

= ? u 5 0, (2)

­r′

­t
1 u ? =r′ 5 0, (3)

where t is the time, u is the velocity vector, k̂ is a unit vector
pointed in the vertical (opposite to the direction of gravita-
tional acceleration), p is the pressure, r0 is a constant back-
ground fluid density, r′ is a perturbation fluid density from
the background density, and g is the gravitational accelera-
tion. Here, the environment is assumed to be neutrally stable;
for inviscid flow in a neutrally stable environment and apply-
ing the incompressible Boussinesq approximation, the pertur-
bation density acts as a fluid tracer with no sources or sinks.
In the following, we use buoyancy defined as B; 2gr′/r0.

a. Thermal momentum budget

To derive our analytic thermal model and theoretical values
for a, we first focus on the vertical momentum budget of ther-
mals. This allows us to derive an analytic expression for the
thermal ascent rate, from which we obtain expressions for
thermal spreading rate a later. Defining the thermal as occu-
pying some portion of space defined by V within the domain,
we can integrate over V to obtain the thermal’s budget of ver-
tical momentum r0w, where w is the vertical velocity. Because
V changes over time, we use Gauss’s theorem to relate the
divergence of the momentum field over V to the flux of mo-
mentum across the surface of V (Romps and Charn 2015;
Morrison et al. 2022):

d
dt

�
V(t)

r0wd
3x 52

�
V(t)

­p
­z

d3x 1

�
V(t)

r0Bd
3x

1

�
­V(t)

(n̂ ? ue)r0wd2x, (4)

where ­V(t) is the two-dimensional boundary of V(t), n̂ is a
unit vector normal to the thermal’s surface, and ue is an effec-
tive entrainment velocity defined as the displacement rate of

the thermal boundary ub relative to flow velocity u, i.e., ue 5
ub 2 u.

Defining w ; V21
�
V(t)wd

3x as the thermal-averaged w (as-
sumed to be equal to the thermal top ascent rate wt) in (4), us-
ing the product rule d(wtV)/dt 5 Vdwt/dt 1 wtdV/dt, dividing
by thermal volume V, and rearranging terms, we express the
thermal-averaged momentum budget as

r0
dwt

dt
52Fd 1 E 1 r0B, (5)

where Fd ; V21
�
V(t)(­p/­z)d3x is the thermal-averaged pres-

sure drag force, E; V21
�
­V(t)(n̂ ?ue)r0wd2x2 V21(dV/dt)wtr0

is the momentum entrainment, and B ; V21
�
V(t)Bd

3x is the
thermal-averaged buoyancy. Equation (5) expresses the verti-
cal momentum budget of a thermal as an acceleration term on
the left-hand side and a drag force arising from vertical pres-
sure gradients, an entrainment “pseudoforce,” and a buoyant
forcing term on the right-hand side.

We assume that detrainment is negligible and that thermal
expansion incorporates fluid with w 5 0. Thus, net entrain-
ment is related only to the change in thermal volume (follow-
ing the Boussinesq approximation). This assumption is well
justified based on the DNS of dry thermals from LJ2019; see
Morrison et al. (2022) for further discussion. It follows that
we can write the entrainment term as E’2V21(dV/dt)wtr0,
where V21(dV/dt)5 (d lnV/dzt)wt 5 ewt using the chain rule.
Thus, we can express E’2ew2

t r0.
We nondimensionalize the thermal momentum equation

next. Based on a characteristic background fluid density
r0, thermal radius R0, and thermal buoyancy B0, we can
define various scales including time t0 5

��������
R0/B0

√
, velocity

w0 5
��������
R0B0

√
, and pressure p0 5 r0B0/R0. From this, we write

t* 5 t/t0, z* 5 z/R0, w
* 5 w/w0, F*

d 5 (R0/p0)Fd, E* 5 E/E0
5 [R0/(r0w2

0)]E, and B* 5 B/B0. Substituting these relations
into the thermal-averaged momentum budget gives a nondi-
mensional form of the equation:

r0w
2
0

R0

dw*
t

dt*
52

p0
R0

F*
d 1

r0w
2
0

R0
E* 1 r0B0B

*
: (6)

Multiplying (6) by R0/(w2
0r0), it can be expressed in terms

of two nondimensional flow parameters: Froude number
Fr 5 w2

0/(B0R0) and Euler number Eu 5 p0/(r0w2
0). This gives

dw*
t

dt*
52EuF

*
pB 2 EuF

*
pD 1 E* 1 F21

r B
*
, (7)

where the nondimensional drag force F*
d is divided into two

parts following the standard separation of perturbation pressure
into buoyant and dynamic components: F*

d 5 F*
pB 1 F*

pD. The
buoyant part is approximated by EuF

*
pB ’ F21

r (12 Cy )B
*
. The

term Cy is a virtual mass parameter defined such that the sum
of F21

r B
*
and 2EuF

*
pB is equal to F21

r CyB
*
. Cy depends on the

structure of the buoyancy field. For example, Cy 5 2/3 for a
spherical buoyancy perturbation (Tarshish et al. 2018). It follows
that the nondimensional effective buoyancy}the sum of buoy-
ancy and buoyant perturbation pressure forcing}isB*

eff 5 CyB
*
.
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We approximate the dynamic pressure part of thermal drag us-
ing the standard drag equation divided by V to give a volume-
averaged dynamic pressure drag force: FpD 5 r0w

2
t CdA/(2V),

where A is the cross-sectional thermal area perpendicular to the
flow. Defining g as the ratio AR/V, which is a constant for self-
similar thermals (g 5 3/4 for a spherical thermal), we can express
the thermal-averaged nondimensional dynamic pressure drag
force as F*

pD 5 w*2
t gCd/(2R*). Note that Cd ’ 0 for initially

spherical (Ar 5 1) dry buoyant thermals (Morrison et al. 2022).
Although Cd could in principle vary with Ar, the thermal simula-
tions presented in section 4, with Ar varying from 0.5 to 2, all
have small Cd (magnitude less than 0.1). Thus, the dynamic pres-
sure drag is relatively unimportant in the thermal momentum
budget. Nonetheless, we retain this term and Cd in the equations
for generality.

Hereinafter, we take characteristic values of the physical
scales r0, R0, and B0 as unity so that Fr 5 1 and Eu 5 1 and drop
the * indicating nondimensional quantities for convenience. It
follows that we can write the nondimensional thermal-averaged
vertical momentum budget equation given by (7) as

1
2
dw2

t

dzt
1 w2

t e 1
gCdw

2
t

2R
2 CyB 5 0, (8)

where we have used the above relations for E and buoyant
and dynamic pressure contributions to drag, and the chain rule
to express the time derivative as a height derivative following
the thermal top: d/dt5 wtd/dzt (zt is the thermal top height).

If we assume a ; dR/dzt is constant, consistent with recent nu-
merical modeling studies (Morrison et al. 2021; LJ2019) and the
simulations herein, we can writeR5 R01 azt5 11 azt by inte-
grating a from z′t 5 0 to z′t 5 zt. Also, B 5 B0/R

3 5 1/R3 (since
we takeB05 1 as the initial buoyancy scale, andB scales inversely
with the change in thermal volume as the thermal entrains non-
buoyant environmental fluid and expands) and e 5 e/R (LJ2019).
With these assumptions and relations, (8) may be written as

1
2
dw2

t

dzt
1 e 1

gCd

2

( )
w2

t

(1 1 azt)
2

Cy

(1 1 azt)3
5 0: (9)

Assuming a, e, Cy, g, and Cd are constants, (9) represents a
first-order linear differential equation with an exact solution
given by

w2
t 5

Cy

e 2 a 1
g

2
Cd

( )
(1 1 azt)2

1 k1(1 1 azt)2(2e/a)2(gCd /a),

(10)

where k1 is a constant of integration. Given the boundary con-
dition wt 5 0 at zt 5 0, we may solve for k1 and use this in
(10) to give

w2
t 5

Cy

e 2 a 1
g

2
Cd

( )
(1 1 azt)2

2
Cy

e 2 a 1
g

2
Cd

( )
(1 1 azt)(2e/a)1(gCd/a)

: (11)

Equation (11) is similar to Escudier and Maxworthy [1973,
Eqs. (9)–(11) therein], except that we invoke the Boussinesq
approximation, express wt using a single analytic equation as
a function of height zt rather than t, and include an explicit de-
pendence on a.

Solutions for wt can be obtained from (11), provided values
of a, e, g, Cd, and Cy are known. Past literature has suggested
a ; 0.05–0.3 (Lai et al. 2015), e’ 3a (LJ2019), Cd’ 0 (Morrison
et al. 2022), meaning that g is not relevant, and Cy ; 0.5–0.8
(Tarshish et al. 2018). Examples of solutions to the analytic
wt Eq. (11) using e 5 3a, Cd 5 0, Cy 5 2/3, and a ranging
from 0.05 to 0.3 are shown in Fig. 2 (solid lines). With these
parameter values, (11) gives a family of solutions that all ex-
hibit a sharp increase of wt with height initially corresponding
to a “slippery” regime when upward buoyant forcing is pri-
marily balanced by vertical acceleration, followed by a slower
decrease of wt corresponding to a “sticky” regime when weak
buoyant forcing is balanced mainly by entrainment.2 This shape
of the wt profile with the two distinct regimes of thermal evolu-
tion was discussed previously via analysis of numerical solutions
(e.g., Wang 1971; Tarshish et al. 2018). In subsequent sections,
we will determine constraints on values of a while also briefly
exploring how e and Cy vary with the initial thermal aspect ratio.

We can understand scaling behaviors in the slippery and
sticky regimes via asymptotic analysis and expansion of (11),
similar to the asymptotic analysis of Escudier and Maxworthy
(1973) applied to their equation set for wt. For the slippery re-
gime when zt , 1, we can expand (11) using Taylor series

FIG. 2. Analytic solutions to the thermal wt Eq. (11) as a function
of nondimensional thermal top height zt. Different color lines indi-
cate assumed values of thermal expansion rate a as labeled. Black
dotted and dashed black lines illustrate scalings from the asymp-
totic analysis corresponding to the “slippery” regime during ther-
mal spinup and “sticky” regime after spinup, respectively. The *
symbols indicate the height and magnitude of maximum wt for
each curve.

2 Note that the sticky regime is primarily a balance between en-
trainment and buoyant forcing for dry thermals, whereas Romps
and Charn (2015) identified a sticky regime for cloud thermals
consisting mainly of a balance primarily between buoyant forcing
and downward pressure gradient forcing.
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about zt 5 0 and retain the first-order term to give wt ~ z1/2t .
This is equivalent to a scaling of zt ~ t2 since wt 5 dzt/dt, which
is consistent with the theory and numerical simulations in the
slippery regime from Tarshish et al. (2018).

In contrast, when zt .. 1 for the sticky regime, 1 1 azt ’ azt
and the second term on the right-hand side of (11) is negligible
compared to the first term (for 2e/a 1 gCd/2 . 2, which is satis-
fied for typical values of 2e/a ’ 6 and gCd ’ 0), implying a scal-
ing of wt with z21

t . This is equivalent to a scaling of zt ~ t1/2,
consistent with the theory and simulations of LJ2019 for the
sticky regime. These scaling regimes well correspond to full solu-
tions of the analytic wt equation, Eq. (11), for small and large zt
as seen in Fig. 2 and are also consistent with the asymptotic anal-
ysis from Escudier and Maxworthy (1973).

b. Impulse, circulation, and thermal spreading rate

Although (11) accounts for the impact of thermal spreading
rate a on wt via entrainment, by itself it does constrain a.
However, the thermal momentum budget can provide a basic
constraint on a via the impulse–circulation relation (e.g.,
Turner 1957; Lai et al. 2015; McKim et al. 2020; Morrison et al.
2021). A thermal’s circulation G can be calculated as the inte-
gral of velocity along a circuit ­S passing through the thermal
center and returning through the ambient fluid or equiva-
lently as an area integral of vorticity over a region S bounded
by the circuit ­S. If we assume axisymmetry, this area integral
can be expressed as the integral of azimuthal vorticity vf over
S in axisymmetric (r, z) coordinates (McKim et al. 2020):

G 5

�
­S
u ?dl 5

�
S
vf dr dz: (12)

The time rate of change of circulation is given by

dG
dt

5

�
S
2

­B
­r

dr dz 5

�zts

zbs

Bc dz (13)

for an inviscid fluid, where Bc is the buoyancy along the ther-
mal’s vertical axis, zbs and zts are the bottom and top heights
of region S, and the region with Bc . 0 is assumed to be en-
compassed within S (hereinafter when writing this integral,
we drop the limits zbs and zts for convenience). In words, (13)
shows that the rate of increase in G during spinup is equal to
the vertical integral of core buoyancy.

We can directly relate G to a via the impulse–circulation re-
lation. Fluid impulse I is the total momentum change starting
from rest caused by external forcing over a finite region of
space. For an idealized infinite domain in the absence of non-
conservative forces and applying the incompressible Boussinesq
approximation, I is related to vorticity v by (e.g., Batchelor
2000)

I 5
r0
2

�
V
x 3 vd3x, (14)

where V is the entire domain and x is a position vector. The
term I is essentially a record of the volume- and time-integrated
external (here, gravitational via a localized buoyancy anomaly)
forcing on the fluid. If the region of nonzero vorticity within the

domain is concentrated on a circle with a radius equal to Ry

(i.e., the vortex ring radius, see Fig. 1), and this region of vortic-
ity is small compared to Ry, then (14) can be approximated us-
ing the second part of (12) as (Turner 1957; McKim et al. 2020)

Iz 5 pr0GR
2
y : (15)

The subscript “z” indicates that the impulse is only in the z di-
rection as a consequence of the axisymmetry of the flow.

Taking d/dt of (15), we have

dIz
dt

5 pr0 R2
y

dG
dt

1 G
dR2

y

dt

( )
5 FB, (16)

where FB is the domain-integrated buoyant forcing, which is
constant in time following (3) in a neutrally stable environment.

Equation (16) can be directly related to a using the chain
rule d/dt5 wtd/dzt to give dR2

y /dt5 z2dR2/dt5 2z2Rwta, where
z is the ratio of the vortex radius to the thermal radius and as-
sumed to be constant following self-similarity but may vary with
Ar. Substituting this relation for dR2

y /dt in (16) and substituting
(13) for dG/dt, we have

pr0z
2R2

�
Bc dz 1 2pr0Gz

2Rwta 5 FB: (17)

The physical interpretation of (13)–(17) is that if there is no
buoyancy along the thermal’s vertical axis (Bc 5 0), then
there is no change in the thermal’s circulation with time
(dG/dt 5 0) and the first term on the left-hand side of (17) is
zero. The removal of buoyancy along the thermal’s vertical axis
by the upward encroachment of nonbuoyant environmental
fluid entrained from below the thermal corresponds to the point
of thermal spinup. With FB . 0, Bc 5 0 implies a . 0 in the sec-
ond term since z, R, and wt are all .0. This is consistent with
the basic argument from Turner (1957) and McKim et al.
(2020) explaining how the impulse–circulation relation dictates
a positive thermal expansion rate when dG/dt 5 0 and FB . 0.
Moreover, FB is constant as noted above, and self-similarity im-
plies a and z are constants and R ~ zt. This gives wt ~ z21

t ,
which is consistent with the scaling from our analytic wt equa-
tion, Eq. (11), in the “sticky” regime where zt .. 1. During the
spinup phase corresponding to the “slippery” regime, Bc . 0
and the first term on the left-hand side of (17) . 0. This implies
that the second term on the left-hand side of (17) must be
smaller before spinup than after.

If G is known when the thermal is spun up, we can derive
an analytic expression for a by combining (15) and (17) with
the relation between a thermal’s impulse and wt (Akhmetov
2009; McKim et al. 2020): Iz 5mR3r0(11 Cy )wt, where m is a
shape parameter equal to the ratio of thermal volume to R3.
This is analogous to Eq. (17) in McKim et al. (2020), who ex-
pressed e (rather than a) in terms of z, FB, G, Cy, and m. All of
these parameters likely depend on Ar. For example, the virtual
mass coefficient Cy depends on the thermal shape (Tarshish
et al. 2018), while G (after spinup) has a strongly nonlinear de-
pendence on Ar as we show in section 4 from the thermal nu-
merical simulations. Such dependencies are broadly consistent
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with sensitivity of a to Ar but complicate the interpretation and
explanation of this sensitivity.

These complications motivate an alternative approach de-
scribed below that relates a to the thermal top height when
spinup is achieved, corresponding to the thermal top height
when wt reaches its maximum. This is in a similar vein as relat-
ing a (or e) to z, FB, G, Cy, andm, but with much simpler func-
tional dependencies allowing for a clear understanding of the
variation of a with Ar.

c. Relationship between thermal spinup height and
spreading rate a

We define a critical thermal top height zc separating the
“slippery” and “sticky” regimes when dwt/dzt 5 0 and wt is a
maximum. During spinup, dwt/dzt . 0 as dG/dt . 0 owing to
the presence of buoyant fluid along the thermal’s vertical axis.
After buoyancy is eroded along the thermal’s vertical axis
from entrainment of environmental fluid, G is constant follow-
ing (13), and thus, dwt/dzt , 0 following the wt ~ z21

t scaling
implied by (17). Taken together, the implication is that zc cor-
responds to the thermal top height at the time when core
buoyancy is eroded and thereafter dG/dt ’ 0, which is sup-
ported by the numerical simulations presented in section 4.

The critical height zc is obtained by taking d/dzt of (11) and
setting dwt/dzt 5 0. We also introduce the parameter b ; e/a,
the ratio of entrainment efficiency to thermal spreading rate.
The resulting expression is solved analytically to yield the fol-
lowing relation between zc, a, b, g, and Cd:

b 1
gCd

2a

( )
(1 1 azc)22b2(gCd/a)12 5 1: (18)

Figure 3 shows a calculated from (18) as a function of zc for b
equal to 2, 2.5, and 3 and Cd 5 0 (Fig. 3a) and for Cd equal to

20.1, 0, and 0.1 and b 5 3 (Fig. 3b). For these calculations,
g 5 3/4 corresponding to spherical thermals for simplicity. A
self-similar thermal shape implies b 5 3, meaning that e 5 3a
and e ; d(lnV)/dzt 5 3a/R (LJ2019). Deviations from b 5 3,
therefore, indicate the degree to which thermals are not self-
similar. Zhao et al. (2013), while noting self-similarity of gross
thermal characteristics (overall thermal shape and size) after
spinup, found that internal vorticity and density structures
evolved nonsimilarly in their experimental study. In the simu-
lations presented later in the current paper, b is somewhat
smaller than 3, ranging from ;2.4 to 2.7 for Ar , 2. For the
Ar 5 2 simulation, b ; 2.1, indicating that initially vertically
elongated thermals change their shape relatively more than
the smaller Ar thermals. This may be related to the inability
of thermals to take in all initially buoyant fluid when Ar $ 2,
leaving a wake of buoyant fluid below the thermal, as dis-
cussed in Lai et al. (2015). Nonetheless, sensitivity of a to b
over the range of 2–3 is fairly small, with a 24% decrease in a

as b is increased from 2 to 3.
The change in a for a given zc as Cd is varied from 20.1 to

0.1 is small in magnitude, with a varying by up to 0.04 for
the range of parameters shown in Fig. 3b. The relative
change is greatest at small values of a (large zc), up to
;50% in Fig. 3b. For the thermal numerical simulations de-
tailed later in the paper, with Ar varying from 0.5 to 2, mean
Cd ranges from 20.06 to 0.08 [using the same method to cal-
culate Cd from the simulated dynamic perturbation pressure
field as in Morrison et al. (2022)]. Thus, dynamic pressure
drag is relatively unimportant in (18), and hereinafter, we
will assume Cd 5 0. With this assumption, (18) can be rear-
ranged to give

a 5
b1/(2b22) 2 1

zc
: (19)

FIG. 3. Solutions to the analytic a–zc relation (18) with (a) Cd 5 0 and varying b as indicated and (b) b 5 3 and
varying Cd as indicated.
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If we further assume a self-similar thermal shape, we can use
(19) with b5 3 to obtain

a 5
31/4 2 1

zc
: (20)

The one-to-one relationship between a and zc means that if zc
is known, this uniquely constrains the value of a. We empha-
size that zc does not cause a particular value of a, but if zc is
known, then a can be predicted from it. A key point is that
the expressions for a in (18)–(20) are independent of Cy and
thus expected to have little dependence on Ar (given that b
does not vary much with Ar and Cd ’ 0). Equation (20) gives
consistent results with the analytic thermal wt profiles shown
in Fig. 2, which have zc ranging from ;1 to 6 for a of 0.05–0.3
(for b5 3 and Cd 5 0).

d. Relationship between zc and Ar

As argued in the previous subsection, zc corresponds to the
thermal top height when buoyant fluid along the thermal’s
vertical axis is replaced by entrained environmental fluid
(meaning circulation is approximately constant thereafter).
This erosion of buoyancy in the thermal core occurs as non-
buoyant parcels are entrained near the thermal bottom and
move upward relative to the thermal as a whole. Thus, we ex-
pect the time scale for loss of buoyancy along the thermal’s
vertical axis to be equal to the time for parcels entrained near
the thermal bottom to travel upward through the thermal.

A parcel must travel a distance of the initial thermal depth
plus zc to ascend through the thermal in the same amount of
time as the thermal top takes to reach height zc. Since we can
express the initial thermal depth as D0 5 2Ar (keeping in
mind R0 5 1), this time scale is

tc 5
zc 1 2Ar

wp

, (21)

where wp is the time-averaged parcel vertical velocity along
its Lagrangian path: wp ; t21

c

�tc
0 wp(t)dt. By definition, this is

the same time scale for the thermal top to reach zc (starting
from zt 5 0), implying

tc 5
zc
wt

, (22)

where wt ; t21
c

�tc
0 wt(t)dt is the time-averaged thermal top

vertical velocity.
Substituting (21) in (22) and solving for zc gives

zc 5
2Ar

s 2 1
, (23)

where s; wp /wt is the ratio of the time-averaged vertical
velocities of the parcel and thermal top.

Equation (23) can be combined with (19) to yield an ex-
pression for a as a function of Ar:

a 5

(
b1/(2b22) 2 1

)
(s 2 1)

2Ar

: (24)

If we take b5 3 following self-similarity, this gives

a 5
(31/4 2 1)(s 2 1)

2Ar

: (25)

e. Predicting s from Hill’s analytic spherical vortex

The thermal aspect ratio Ar is specified from the initial con-
ditions, leaving s as the only unknown parameter in (25) to
obtain a. This parameter is closely related to the thermal in-
ternal flow structure, which controls the rate of parcel ascent
in the thermal core relative to the thermal as a whole. Lai et al.
(2015) noted similarity of the flow structure of thermals to
Hill’s vortex, particular for Ar 5 2. They found that the ana-
lytic Hill’s vortex solution deviated more from numerical
thermal simulations for smaller Ar, but noted “it can still give
a fair prediction of flow field” for Ar as low as 0.5. In agree-
ment with Lai et al. (2015), in section 4, we show a close cor-
respondence of vertical velocity profiles along the central axis
in numerically simulated thermals to Hill’s vortex for initial
Ar of 1 and 2, with more deviation but still fairly similar w
profiles for Ar 5 0.5.

Given the overall similarity of Hill’s analytic vortex with
the internal flow of thermals, we can approximate s from the
vertical profile of w in the core of Hill’s vortex. The w field
within Hill’s vortex is given by

w(r, z) 52
3W
4

4
r
a

( )2
1 2

z
a

( )2
2

10
3

[ ]
,

����������
z2 1 r2

√
# a, (26)

in axisymmetric coordinates, where a is the vortex radius and
W is the steady vortex ascent rate. The flow outside of the
vortex is given by

w(r, z) 5 Wa3(2z2 2 r2)
2(z2 1 r2)5/2 ,

����������
z2 1 r2

√
. a: (27)

Along the vertical axis (r 5 0), the w profile is symmetric and
features an increase in the bottom half of the vortex, a maxi-
mum w equal to 5/2W at z 5 0, and a decrease in the upper
half.

A parcel initially at the bottom of Hill’s vortex will rise at
the same rate as the vortex since u 5 0 and w 5 W at this lo-
cation (i.e., it is a stagnation point in the vortex-relative flow).
However, a parcel initially just above the vortex bottom at
r 5 0 will rise relative to the vortex as a whole. Thermals, ow-
ing to their buoyancy, entrainment, and nonsteady behavior,
do not have such stagnation points, and parcels initiated at
the thermal bottom rise through the thermal depth as demon-
strated by the simulations in section 4. Thermal flow is similar
to Hill’s vortex in the interior. Thus, although parcel ascent
differs between thermals and Hill’s vortex near the top and
bottom boundaries, it is similar in the interior with an acceler-
ation toward the center followed by a deceleration above.

Because of the stagnation points in Hill’s vortex, we cannot
use it directly to estimate the Lagrangian time scale for parcel
ascent starting from the thermal bottom. However, given sim-
ilarity of the interior flow between thermals and Hill’s vortex,
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a rough approximation is to replace the Lagrangian time-
mean w along the parcel’s path with the Eulerian vertical-
mean w from Hill’s vortex: wp ’ (2a)21�z5a

z52a
w(z)dz5 2W,

where w(z) is from (26) with r 5 0. This gives s 5 wp /W ’ 2,
which is expected to be an upper estimate since the La-
grangian mean weights toward smaller values of w com-
pared to the Eulerian mean. Additional context for this
approach is provided by analysis of the thermal numerical
simulations. Comparing the Lagrangian meanwp for a parcel ini-
tiated at the thermal bottom versus the time-averaged Eulerian
mean w (from thermal bottom to top) during the spinup period
shows a close correspondence between the two, with relative dif-
ferences ranging from 26% to 14%. Furthermore, s values
from the simulations generally range from 1.80 to 1.95 (with the
exception of s ’ 1.63 in the Ar 5 2 simulation), close to but
slightly less than s 5 2.

We can also calculate wp from Hill’s vortex exactly for a
parcel initiated above the vortex bottom and ending the same
distance below vortex top. This is obtained from

wp 5 (D 1 2fa)/Dt, (28)

where f is the fractional distance from the vortex center (z 5 0)
where the parcel is initiated relative to its radius a, Dt is the time
for the parcel to travel along this path, andD5WDt is the distance
traveled by the vortex as a whole over Dt. The distance D 1 2fa
is the total distance traveled by the parcel over its Lagrangian
path. Following a trajectory along r 5 0, dz/dt 5 w(z) 2 W,
where z is height relative to the ascending vortex and w(z) 2 W
is the vortex-relative parcel velocity. The time scale for ascent is
calculated as

�t5Dt

t50 dt5Dt5
�z5fa

z52fa
[w(z)2W]21 dz. The inte-

gral on the right-hand side can be solved analytically by
substituting (26) for w(z) combined with r5 0 to yield

Dt 52
2a
3W

[ln(1 2 f ) 2 ln(1 1 f )]: (29)

Combining (28) and (29) with D 5 WDt gives an expression
for wp , and s is then obtained by dividing this expression by
W to give

s 5 1 2 3f [ln(1 2 f ) 2 ln(1 1 f )]21: (30)

A parcel initiated just above the vortex bottom, with f of
0.99–0.9 (i.e., initiated at a distance of 0.01–0.1 radii above the
thermal bottom and ending the same distance below top),
gives s of 1.6–1.9 consistent with the simulations.

Following discussion in Lai et al. (2015), the flow field of
the Norbury vortex family (Norbury 1973), which generalizes
Hill’s vortex to variable ring vortex thickness, may be closer
to the thermal simulations with varying Ar. Similarly, the
O’Brien (1961) analytic spheroidal vortex model might give a
better description of the flow for spheroidal thermals. How-
ever, these models are steady state and also have stagnation
points. Since Hill’s vortex provides a reasonable description
of the interior thermal flow over a range of Ar, we use it to
constrain s following the discussion above.

Combining s’ 2 from the Eulerian mean w of Hill’s vortex
with (19) and (23) gives our final theoretical expression for a
(with the assumption of self-similarity so that b5 3):

a ’
(31/4 2 1)

2Ar

’
0:158
Ar

: (31)

3. Description of the numerical simulations

a. Model description and experimental design

We utilize the Cloud Model 1 (CM1) fluid flow model to
numerically simulate thermals with varying initial Ar. CM1
is a nonhydrostatic model which has been widely used to
simulate idealized atmospheric flows. Here, we use the in-
compressible Boussinesq configuration to solve the filtered
Navier–Stokes equations similar to the large-eddy simulation
(LES) configuration in Morrison et al. (2022). Prognostic varia-
bles are the 3D components of flow velocity and potential tem-
perature perturbation u′, although near-axisymmetry of the
model fields is retained. Buoyancy B is obtained by gu′/u0,
where u0 is a constant background u of the fluid environment.
As noted by Morrison et al. (2022), in this framework, prog-
nosing u′ is equivalent to prognosing B itself. Simulations are
nondimensionalized using a length scale equal to the radius
of the initial thermal R0 (the radius of the initial buoyancy
perturbation) and a time scale given by

��������
R0/B0

√
, where B0 is

the initial thermal buoyancy. The density scale r0 is equal to the
constant background fluid density in this Boussinesq framework.
All other quantities are nondimensionalized following these ba-
sic scales.

The initial Ar of thermals is varied from 0.5 to 2, similar to
the range from Lai et al. (2015). As we show in section 4, this
produces a wide spread of a (;0.08–0.25). Thermals are initi-
ated by adding a buoyancy perturbation B0 uniformly within
a spheroidal volume having a horizontal radius of R0 and a
vertical radius of ArR0. To minimize the impacts of boundary
conditions, the initial buoyancy perturbations are centered at
a height of 4R0, and the horizontal domain width is $16R0

and the vertical domain height is 64ArR0 (64 times the initial
vertical thermal radius). The model grid is isotropic in all
three directions with a grid spacing DLm equal to 0.1ArR0.
Since the initial Ar varies from 0.5 to 2, DLm ranges from
0.05R0 to 0.2R0. The time step is 0.0362 times the time scale��������
R0/B0

√
. Because the thermals expand as they ascend, the

overall dynamical structure is well resolved with at least 10
grid points horizontally and 20 points vertically across the
thermals. An additional set of simulations with Ar varying
from 0.5 to 2 but DLm 5 0.1R0 (thus at least 20 points hori-
zontally and 10 points vertically across the thermals) was also
run and analyzed. This set gives similar results to the first set,
and thus, we only report the results of the first set of simula-
tions in this paper. Other details of the model setup are given
in Table 1.

In this study, we use LES applied to the filtered Navier–
Stokes equations instead of DNS to retain a close connec-
tion to atmospheric modeling, particularly modeling of dry
and moist thermals in the planetary boundary layer and
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convective clouds in which DNS is not possible given the
huge O(109) Reynolds numbers involved. The LES frame-
work is also consistent with our previous work on dynamic
drag of dry buoyant thermals (Morrison et al. 2022) and
similar to previous thermal simulations of Lai et al. (2015).
The subgrid-scale (SGS) mixing follows a Smagorinsky-type
approach as implemented by Stevens et al. (1999, see their
appendix B, section b). The SGS mixing length is set to
DLm. Because the dissipation scale (the model’s filter scale)
is a relatively large fraction of the thermals’ radii, the re-
solved scale flow is smooth and thus appears laminar. The
resulting thermal evolution and internal flow structure of
the simulated thermals is remarkably similar to the DNS of
initially spherical laminar thermals in LJ2019 (Re 5 630).
Results across the range of Ar are close to those of Lai et al.
(2015), who also numerically solved the filtered (discretized)
Navier–Stokes equations but using a k–d turbulence closure
(Launder and Spaulding 1974), where k is the resolved ki-
netic energy and d is the energy dissipation rate. Our simu-
lations are integrated forward in time until the thermal top
(as defined in section 3b) reaches a height of 15R0 above the
initial thermal top (i.e., top of the initial buoyancy perturba-
tion). To investigate the internal thermal flow characteris-
tics, particularly the time for ascent of a parcel through the
thermal, each simulation includes forward trajectories for a
parcel placed at the thermal bottom at the initial time. We
use the built-in parcel trajectory calculations in CM1 which
are done during the model integration using linear interpo-
lation of the flow field at each model time step.

b. Analysis methodology

Thermal boundaries must first be identified and tracked in
order to analyze thermal behavior including spreading rate.
We use a method similar to LJ2019 and Morrison et al.
(2022). At each output time (at an interval of 0.542 times the
time scale

��������
R0/B0

√
), the horizontal thermal midpoint is deter-

mined by the column with maximum vertically integrated
pressure perturbation. Thermal top is defined by the buoy-
ancy field analogously to LJ2019: the provisional thermal top
height zt is calculated as the highest level where the horizon-
tally averaged B $ 1/10 of the maximum horizontally aver-
aged B (maximum defined in the vertical). This is done at
each output time to generate a time series of provisional zt,
from which we calculate the thermal top ascent rate wt using a

centered difference in time. Using zt obtained directly from
the B field can result in noise in wt and hence in thermal vol-
ume and radius. However, unlike LJ2019 and Morrison et al.
(2022), we apply this wt directly to calculate the streamfunc-
tion and thermal boundaries rather than using a fitting proce-
dure to the analytic scaling relation wt ~ t21/2 (or analogously,
wt ~ z21

t ) from similarity theory. Although the fitting method
reduces noise, it is only applicable in the sticky regime after
spinup, and we are interested in thermal behavior both during
spinup and after. Although wt here is somewhat noisy, the
spreading behavior of thermals and its sensitivity to Ar are
clear.

Once wt is determined, model output is azimuthally aver-
aged around the horizontal midpoint using a radial–vertical
grid (r, z) with the same grid spacing as the original Cartesian
grid. We then calculate the Stokes streamfunction using the
thermal-relative flow field. This is done by integrating

­c

­r
5 2pr(waxi 2 wt), (32)

­c

­z
522pruaxi, (33)

where uaxi and waxi are the regridded radial and vertical veloc-
ities in cylindrical coordinates, with the boundary condition
c(r5 0, z5 zt)5 0. The boundary of the thermal is the c 5 0
contour. Thermal radius R is calculated as the widest region
with c $ 0. Spreading rate a is calculated from a 5 dR/dzt us-
ing centered finite differencing. Fractional entrainment rate e

is calculated from d(lnV)/dzt, where V is defined by the volume
with c $ 0, again using centered finite differencing. Entrain-
ment efficiency e is then obtained as the product of e and R.

Other quantities of interest are 1) vorticity, which is calcu-
lated directly from the velocity field using centered finite
differencing, and 2) buoyant and dynamic components of per-
turbation pressure, output directly from the model as de-
scribed in Morrison et al. (2022).

4. Analysis of numerical simulations

Overall structure and evolution is similar for all of the simu-
lated thermals. Starting from rest, rapid spinup ensues owing
to vorticity generation from the thermals’ buoyancy distribu-
tions. The thermals spread outward as they rise and entrain
the surrounding fluid. Spinup of the thermals (after which cir-
culation is nearly constant) occurs when a parcel initially
placed at the thermal bottom rises to near proximity of the
thermal top. Here, we calculate the critical height zc as the
thermal top height when spinup is achieved, rather than di-
rectly from the height where dwt/dzt 5 0 and wt is maximum
because dwt/dzt is rather noisy. Nonetheless, zc calculated
from the parcel trajectories matches well with broad maxima
in wt as shown later.

In accordance with the theory presented in section 2, zc
ranges from about 1 to 6 as Ar is varied from 0.5 to 2 (Table 2).
After spinup, when zt . zc in the “sticky” regime, the thermals
continue to expand by entraining environmental fluid, but their
overall flow structure is fairly steady. The thermals undergo a

TABLE 1. Configuration details for the CM1 simulations
presented in this paper.

Feature Configuration

Dynamics Incompressible Boussinesq
Number of horizontal grid points 320 3 320
Number of vertical grid points 640
Advection Fifth-order WENO
Subgrid-scale mixing Smagorinsky type
Lateral boundary conditions Periodic
Lower and upper boundary

conditions
Free slip and rigid
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slow deceleration (relative to the faster acceleration during
spinup) with wt roughly proportional to t21/2 (and thus also pro-
portional to z21

t ) in accordance with the classical similarity the-
ory of Scorer (1957).

Figure 4 shows vertical cross sections through the thermal
center of B, w, horizontal vorticity in the y direction hy, and
streamfunction c after spinup, when thermal top height is at
approximately zc 1 2R0. Thermal flow features well docu-
mented by previous studies are seen in the figure. These
include toroidal circulations with rotation centers near the ther-
mal vertical midpoint, buoyancy concentrated near these rota-
tion centers, and downward motion (in an absolute sense and
relative to wt) along the thermal periphery. Although buoyancy
is almost entirely swept away from the thermal core (along the
vertical axis at X 5 0) for the Ar 5 0.5 and 1 simulations, some
positive buoyancy remains in the core when Ar 5 2. There is
also fluid with B. 0 and hy Þ 0 below the thermal in this simu-
lation (Figs. 4e,f). This occurs because not all of the initially
buoyant fluid is taken into the thermal’s vortex ring (toroidal
circulation) when the aspect ratio is large, a result also noted by
Lai et al. (2015). This behavior can be described by the
“formation number” (Gharib et al. 1998), which is related to
the maximum vorticity that can be incorporated into a vortex
ring before it “pinches off” from a trailing stem. Earlier work
showed a formation number of 4–5 for vortex rings (Gharib
et al. 1998; Wang et al. 2009), whereas Lai et al. (2015) found a
somewhat lower formation number of ;2, consistent with our
results.3 Despite the presence of a trailing stem of weakly buoy-
ant fluid in the Ar 5 2 simulation, buoyancy in the core is small
relative to that near the rotation centers, and as detailed later,
the theoretical relations between zc, a, and Ar proposed in
section 2 still well describe behavior of this simulation. We sus-
pect that further increases in Ar would lead to greater deviation
with the theory. Indeed, Lai et al. (2015) showed little change in

a as Ar was increased beyond 2, likely because of the inability
of such thermals to incorporate all of the initially buoyant fluid.
The behavior of these thermals instead resembled a starting
plume, consistent with the numerical results of Bond and Johari
(2010).

Differences in thermal aspect ratio with varying initial Ar

persist beyond spinup, although these differences are reduced
compared to the initial Ar. The thermals with initial Ar $ 1
become more flattened (smaller aspect ratio) during spinup.
At the times shown in Fig. 4, the Ar 5 2 simulation has an as-
pect ratio just slightly larger than 1, while that for Ar 5 1 is
about 0.75 and that for Ar 5 0.5 is about 0.6. Different ther-
mal aspect ratios among the simulations are reflected by vari-
ability in time-averaged values of Cy (virtual mass parameter,
see section 2); see Table 2. Here, Cy is calculated at each
model output time directly from the buoyancy and buoyant
pressure forcing averaged over the thermal volume. Larger
initial aspect ratios are associated with larger Cy, consistent
with results from Tarshish et al. (2018). There is also an over-
all decrease in Cy over time during spinup as the thermals flat-
ten, particularly for the simulations with Ar . 1. Changes in
thermal shape during spinup also lead to deviation in b from
the value for self-similar thermals (b5 3). TheAr 5 2 thermal
has the largest deviation, with b ’ 2.06, which is consistent
with it experiencing the greatest change in aspect ratio during
spinup, whereas b ranges from ;2.4 to 2.7 for the other
simulations.

Thermal behavior during spinup is illustrated in Fig. 5,
which shows vertical cross sections of B, w, hy, and c in the
same format as Fig. 4 except during the spinup period for the
Ar 5 1 simulation. Cross sections are shown in nondimen-
sional time increments of 1.1 between t5 1.6 and 4.9. For con-
text, the thermal top reaches zc at t ’ 3.7. The basic
mechanism of spinup is similar for all the runs. Consistent
with the discussion in section 2d, entrainment occurs as envi-
ronmental fluid is swept into the thermal from below in the
convergent flow. This appears as a “bite” taken from the buoy-
ancy field from below and occurs because thermal-relative ver-
tical velocities are strongest in the thermal core. Baroclinic
vorticity generation is concentrated along the edge of the
buoyancy field where there are large horizontal buoyancy gra-
dients. Once the buoyancy field is deformed and starts to wrap
around the vortex core (i.e., the center of rotation), baroclinic
generation and destruction of vorticity drives a spreading of
the thermal in the manner outlined by McKim et al. (2020)
and Morrison et al. (2021). Flattening of the thermal during
spinup is also evident in Fig. 5.

In all simulations, the thermals’ internal flow structures
consist of thermal-relative ascent in the core, with strongest
ascent along the vertical axis and descent along the periphery.
This flow pattern strongly resembles Hill’s analytic spherical
vortex. To illustrate this point further, Fig. 6 compares w pro-
files along the thermals’ vertical axis from the simulations
with Ar of 0.5, 1, and 2 with w profiles at the vertical axis from
Hill’s vortex given by (26) and (27). This is similar to the com-
parison of w profiles from thermal simulations with Hill’s vor-
tex in Lai et al. (2015, Fig. 12 therein). Simulation results here
are shown at the time of spinup when the thermal top is at zc.

TABLE 2. Time-averaged a ; dR/dzt, b ; e/a, virtual mass
parameter Cy, ratio of parcel to thermal-time-averaged vertical
velocity s, circulation G, and critical spinup height zc from the
simulations with varying Ar. Note that b is obtained from the
ratio of time-averaged e to time-averaged a. Because of some
noise in calculating thermal velocity directly, s is derived from
(23) using zc obtained from the simulations as described in the
text. a, e, and Cy are calculated as time averages over the full
simulation period, whereas G values are time-averaged after
spinup to the end of the simulations.

Ar a b Cy s G zc

0.5 0.251 2.37 0.53 1.80 2.30 1.3
0.67 0.207 2.42 0.50 1.95 3.43 1.4
1 0.136 2.71 0.56 1.83 6.00 2.4
1.43 0.095 2.41 0.58 1.80 10.37 3.6
1.67 0.083 2.43 0.65 1.80 12.98 4.2
2 0.079 2.06 0.71 1.63 18.02 6.4

3 Note that this difference may be explained in part because
Gharib et al. (1998) defined formation number by the maximum
vorticity incorporated into the vortex ring, while Lai et al. (2015)
defined it by the maximum volume of fluid incorporated.
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FIG. 4. Vertical cross sections of (left) buoyancy (color contours) and vertical velocity (thin
black solid lines for positive w and thin black dashed lines for negative w; contour values are
60.1, 0.2, 0.6, and every 0.4 thereafter); (right) vorticity in the y plane hy (color contours) and
streamfunction c (contour lines). Thick black lines show thermal boundaries defined by the
c 5 0 isoline. Results are shown for (a),(b) Ar 5 0.5, (c),(d) Ar 5 1, and (e),(f) Ar 5 2. Cross
sections are shown at times when the thermal top is approximately 2R0 above the critical
height zc for each simulation (see text).
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Profiles from the simulations are normalized by the maximum
w with height normalized by the thermal depth; thermal bot-
tom and top heights are set to 21 and 1, respectively. Corre-
spondingly, a 5 1 in (26) and (27) for the Hill’s vortex w
profile. All of the simulations produce similar w profiles as

Hill’s vortex, with the Ar 5 1 being closest. There is also a
close correspondence of the Ar 5 2 simulation with Hill’s vor-
tex, with greater deviation for Ar 5 0.5. Overall, these results
support the discussion in section 2e on the validity of approxi-
mating s for thermals from Hill’s vortex.

Differences in spreading rate a ; dR/dz among the simu-
lated thermals are seen in Fig. 7a, which shows thermal radius
R as a function of zt for the simulations with Ar of 0.5, 1, and
2. The increase of R with zt is clearly greater as Ar is de-
creased, with a about 3 times larger in the Ar 5 0.5 simulation
compared to Ar 5 2. Although R is somewhat noisy, the over-
all spreading rates are nearly constant with zt (seen by the
dotted lines) consistent with similarity theory.

A comparison of simulated wt as a function of zt with solu-
tions to the analytic wt equation, Eq. (11), is shown in Fig. 7b.
The analytic wt are obtained using mean values of Cy, b, and
a from each simulation (Table 2). The overall behavior of wt

is similar among the simulations, with a sharp increase during
spinup followed by a slower decrease after spinup. The ana-
lytic wt are close to the simulated values for each simulation
(compared the dotted and solid lines in Fig. 7). Larger values of
a in the Ar 5 0.5 simulation correspond to faster spinup and
lower height of maximum wt (critical height zc) compared to the
Ar 5 1 and especially Ar 5 2 simulations with smaller a. Thus,
zc increases withAr consistent with the theory in section 2d.

Thermal behavior during spinup for the simulations with Ar

of 0.5, 1, and 2 is further illustrated in Fig. 8, which shows
time series of thermal top height zt and vertical velocity wt,
circulation G, and vertically integrated core buoyancy
(
�
Bc dz). Also shown in Fig. 8 are the height zp and vertical

velocity wp of a parcel placed initially at the thermal bottom
that rises relative to the thermal as a whole. Consistent with
the discussion in previous sections, G increases during spinup
owing to

�
Bc dz. 0 following (13), and this is accompanied

by an increase in wt. wp increases relative to wt as the parcel
rises through the thermal core, with wp reaching a maximum
when the parcel is near the thermal’s vertical midpoint. As a
result of this velocity difference, zp increases faster than zt.
Since the parcel is initiated on the thermal edge at its bottom,
this marks the upward advance of entraining fluid into the
thermal core (see also vertical cross sections of B in Fig. 5).
This leads to a decrease in

�
Bc dz and the rate of increase in

G slows (i.e., dG/dt decreases). At the time when the parcel
rises to near thermal top (zp ’ zt),

�
Bc dz reaches steady val-

ues near 0 (though somewhat larger in the Ar 5 2 simulation)
and dG/dt ’ 0. This point defines the time tc and height zc of
thermal spinup consistent with the discussion in section 2. The
terms tc and zc are calculated here as the time and height
when zp reaches within 2% of zt. tc is denoted by the vertical
black lines in Fig. 8. After spinup, zp tracks closely to zt and
wp remains close to wt, while both decrease slowly. Overall, G
(time-averaged past spinup) increases sharply as Ar is in-
creased, from G ’ 2.30 for Ar 5 0.5 to G ’ 18.02 for Ar 5 2.
Note that there is a small increase in G in the Ar 5 2 simula-
tion after spinup corresponding to a small but nonnegligible�
Bc dz consistent with vertical cross sections of the B field

(see Fig. 4c). This occurs because entrained fluid from below
the thermal has B . 0 in this simulation; not all the initially

FIG. 5. As in Fig. 4, but for the Ar 5 1 simulation during spinup at
the times (t) indicated.
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buoyant fluid is taken up by the thermal initially when the
aspect ratio is large so that some remains below the thermal’s
circulation as discussed earlier. Values of

�
Bc dz reached in the

Ar 5 2 simulation after spinup appear to be nearly steady in
time thereafter, and they are about an order of magnitude
larger than in the other simulations after their spinup. It is ex-
pected that

�
Bc dz would eventually decrease in the Ar 5 2

simulation as the thermal continued to rise and entrain, but in-
vestigating this would require longer simulations and thus a
larger domain.

Values of zc from the simulations, estimated from zp and
zt as described above, are compared to the theoretical linear
zc–Ar relation (23) using s 5 2 from Hill’s analytic vortex
(see section 2e) and using the average s 5 1.80 from the
simulations (Table 2) in Fig. 9a. The simulated and theoreti-
cal zc values are similar, although the Ar 5 2 simulation de-
viates more substantially from the theoretical relations.
Reasons for this deviation are unclear but might be ex-
plained by the buoyant fluid entrained into the thermal
from below in this simulation, leading to some buoyancy

FIG. 6. Comparison of vertical profiles of w from the simulated thermals (blue crosses at each model level) with that from Hill’s analytic
spherical vortex (red lines). The thermal/vortex bottom and top heights are normalized to 21 and 1, respectively, and shown by the hori-
zontal black lines. Profiles of nondimensional w are normalized such that the maximum value is 1. Simulation results are shown for
(a) Ar 5 0.5, (b)Ar 5 1, and (c)Ar 5 2 near the time of thermal spinup.

FIG. 7. Vertical profiles of (a) thermal radius R and (b) ascent rate w for simulations with various Ar as indicated.
Solid lines show results calculated directly from the simulations. Dotted lines in (a) show fit values of constant
a ; dR/dz and in (b) show solutions to the analytic w Eq. (11) using Cd 5 0 and mean values of Cy, a, e from the
simulations.
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remaining along the thermal’s vertical axis even after
spinup. The theoretical s ’ 2 derived from the Eulerian
mean w of Hill’s vortex (see section 2e) is fairly close to s

values obtained directly from the simulations (within 10%
except for the Ar 5 2 simulation), though somewhat larger.
The simulated values range from 1.80 to 1.95 for Ar , 2 but
are slightly smaller (’1.63) for Ar 5 2 (see Table 2).

A direct comparison of the simulated and theoretical values
of spreading rate a is shown in Fig. 9b. Theoretical values are
obtained from 1) Eq. (19) using zc and b derived from the
simulations (Table 2), 2) Eq. (20) using zc derived from the
simulations and b 5 3 following self-similarity, 3) Eq. (25) us-
ing the average s 5 1.80 from the simulations to predict zc,

and 4) Eq. (31) which calculates a from zc predicted using
s 5 2 from Hill’s analytic vortex. All of the theoretical calcula-
tions for a give similar results as the simulations. The simula-
tions show a sharp decrease of a with increasing Ar that
follows an approximate A21

r dependence consistent with the
theoretical expressions. Using b 5 3 instead of b values ob-
tained directly from the simulations leads to a small decrease
in theoretical a. In this case, a values are somewhat smaller
than simulated values for Ar $ 1, but closer to simulated val-
ues for Ar , 1. Using (31) to calculate a well describes the
a–Ar relation but with;10% larger a compared to the simula-
tions (solid line in Fig. 9b). This is consistent with the small
overestimation of s 5 2 approximated from Hill’s vortex. Us-
ing the average s from the simulations (s 5 1.80) to predict
zc, and in turn a following (25), gives a close correspondence
to the simulated a over the range of Ar (dotted line in Fig. 9b).

5. Discussion

Overall, the simulations and theory are in reasonable agree-
ment regarding thermal top height at spinup zc and thermal
spreading rate a and how they vary with initial aspect ratio
Ar. Our results indicate a nearly linear relation between zc
and Ar (though with greater deviation for the Ar 5 2 simula-
tion) and an inverse relation between a and Ar (a ~A21

r ).
Qualitatively, this a–Ar relation is consistent with previous
thermal studies (see Fig. 17 in Lai et al. 2015). Larger a is as-
sociated with greater fractional entrainment rate which leads
to a lower critical height zc, defined as the thermal top height
when wt is maximum. zc also corresponds to the thermal top
height when buoyant fluid along the thermal’s vertical axis is
replaced by nonbuoyant environmental fluid entrained and
advected upward through the thermal core, after which the
thermal is spun up and dG/dt ’ 0. The time scale for this pro-
cess is controlled by how long it takes for parcels initially just
below the thermal bottom to ascend through the thermal,
which in turn depends on Ar. By relating to a to zc, and zc in
turn to Ar, we obtained the inverse relation between a and Ar

in section 2.
This explains why larger a is associated with smaller Ar but

does not by itself explain the physical mechanism. A key
question, therefore, is what is the mechanism driving the in-
crease in a as Ar is reduced? With small Ar,

�
Bc dz is rela-

tively small, and thus, G increases slowly. This implies that at
a given nondimensional time, G will be small relative to that
for a thermal with larger Ar. As entrained fluid rises through
the thermal and sweeps out buoyant fluid along the thermal’s
vertical axis, baroclinic generation and destruction of vorticity
spread the vortex ring and hence thermal boundaries outward
(McKim et al. 2020; also see Fig. 9 in Morrison et al. 2021).
This buoyant forcing will have a relatively greater impact on
the vorticity field when G is small, thus leading to faster out-
ward spread and larger a when Ar is small. This is consistent
with the impulse–circulation relation expressed by (16) after
spinup when dG/dt ’ 0. That equation shows that for a given
domain-integrated buoyant forcing FB, smaller G necessitates
a larger increase in vortex ring radius Ry. Note that we cannot
simply relate a to Ar using the impulse–circulation equation

FIG. 8. Various nondimensional parcel and thermal properties as
a function of time t during the thermals’ spinup for simulations
with (a) Ar 5 0.5, (b) Ar 5 1, and (c) Ar 5 2. Results are shown for
thermal top height zt, parcel height zp, thermal ascent rate wt, par-
cel ascent rate wp, thermal circulation G, and vertically integrated
buoyancy along the thermal’s central vertical axis Bc. The thermal
top height at initial time (t5 0) is at z5 0. Parcels at t5 0 are cen-
tered horizontally at the thermal bottom and move upward
through the thermal over time.
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because G appears directly in this equation, and it depends on
Ar in a nonstraightforward way. The change in impulse over
time, dIz/dt 5 FB, also varies with Ar. Moreover, a is defined
by the change in thermal radius with thermal top height rather
than over time, and thus, relating a directly to dIz/dt and circula-
tion requires a transformation of variables using d/dt5 w21d/dz.
These complications motivated us to instead relate a to Ar via
zc, from which we derived the simple a ~A21

r scaling as noted
above. Nonetheless, relations between impulse, buoyant forcing,
circulation, and thermal/vortex ring radius provide a more com-
plete picture of the physical mechanism underpinning this simple
a–Ar relation.

This work also provides a concise explanation for why ini-
tially spherical thermals (Ar 5 1) have a ’ 0.15 (for an un-
stratified, neutrally stable environment). This value of a is
intrinsically linked to the time scale for sweeping out of the
buoyancy along the thermal’s vertical axis and hence thermal
spinup, which itself depends on the ratio (s) of time-averaged
wp to wt. The thermals’ internal flow structures are similar to
Hill’s analytic spherical vortex, implying s ’ 2 and in turn
constraining the proportionality constant in the a ~A21

r rela-
tion to’0.15 (see section 2e).

An interesting feature is that, in a given simulation, a is
similar before and after thermal spinup. This is evident di-
rectly from the simulations (profiles of R in Fig. 7a, although
they are somewhat noisy, and the vertical cross sections of
thermal properties during spinup in Fig. 5), as well as indi-
rectly by closeness of the simulated and theoretical w profiles
(Fig. 7b), the latter calculated assuming constant a. Thus, a
values are “locked in” early in the simulations, and they de-
pend strongly on the initial conditions. Why is a similar during
spinup and after? A possible explanation is that circulation is
small early in the simulations, while at the same time, entrain-
ment has only just begun to erode buoyancy in the thermal

core. This means that buoyancy gradients and hence baroclinic
generation and destruction of vorticity near the central core are
weak (vorticity generation being concentrated more along the
thermal boundary). However, because circulation and vorticity
near the vortex core are also weak, the net result is a similar
thermal spreading rate compared to later when both baroclinic
generation/destruction of vorticity and circulation are stronger.
Moreover, a is the change in R with zt, and small w during early
spinup means that a small spreading rate in time is associated
with a relatively larger a.

We also note that a is somewhat larger for turbulent com-
pared to laminar thermals; LJ2019 and Morrison et al. (2022)
found ;20% and 40% larger values for turbulent thermals,
respectively. At high Reynolds number, turbulent stresses
lead to a spindown of circulation after thermal spinup such
that dG/dt , 0 (Nikulin 2014; McKim et al. 2020). All else
equal, dG/dt , 0 implies a larger spreading rate following the
impulse–circulation relation (16). Nikulin (2014) developed
an analytic expression for a as a function of G, FB, an empiri-
cal parameter b (encapsulating z, Cy, and m), and an empiri-
cal proportionality constant characterizing the impact of
turbulent stresses. Using parameter values deduced from ex-
perimental data, they suggested a ;3% increase in a from
turbulent stresses. However, this study did not consider the
effects of turbulent stresses on thermals starting from rest.
Reduced circulation from turbulent stresses during spinup
might explain the order-of-magnitude larger impact on a

found by LJ2019 and Morrison et al. (2022), as both studies
simulated thermals that were initially motionless. The hypoth-
esis that turbulent stresses during spinup cause most of the
differences in a between laminar and turbulent thermals is
consistent with Fig. 3 in McKim et al. (2020), which shows
that the turbulent case has ;30% smaller G at the time of
spinup relative to the laminar case.

FIG. 9. (a) Critical height zc and (b) thermal expansion rate a as functions of initial thermal aspect ratioAr from the
simulations and theory. a and zc obtained directly from the simulations are shown by blue crosses. Green and red
crosses in (b) show theoretical a values from (19) with b obtained from the simulations or 20 with b5 3, respectively,
with zc in both expressions obtained directly from the simulations. The theoretical zc from (23) using s 5 2 from Hill’s
analytic vortex and using s 5 1.8 (average s from the simulations) are shown by the solid and dotted black lines, re-
spectively. The solid and dotted black lines in (b) show theoretical a values from (25) using s 5 2 and 1.8,
respectively.
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6. Summary and conclusions

This study investigated the spreading rate a and entrain-
ment behavior of dry, buoyant thermals with varying initial
aspect ratio Ar. An expression was derived for the nondimen-
sional thermal ascent rate wt as a function of thermal top
height zt from the thermal w momentum budget. From this
expression, we defined a critical thermal top height zc where
dwt/dzt 5 0. The height zc corresponds to the thermal top
height when buoyancy is eroded along the thermal’s vertical
axis from entrainment of nonbuoyant environmental fluid
(with thermal circulation approximately constant thereafter).
We then analytically solved dwt/dzt 5 0 to derive an expres-
sion relating a and zc. In turn, zc depends on Ar and the ratio
s of the mean vertical velocity of a parcel rising from thermal
bottom to near its top along its vertical axis to wt. By approxi-
mating the thermal flow similarly to Hill’s analytic spherical
vortex, it was estimated s ’ 2. In this way, we derived an ana-
lytic expression for a that depends inversely on Ar.

Numerical simulations of thermals with Ar varying from 0.5
to 2 were analyzed and compared to the theoretical expres-
sions. The analytic formulation for wt well matched the ther-
mal simulations over the range of Ar. Values of a calculated
directly from the simulations were also close to the theoretical
a over the range of Ar. Consistent with the theory, increasing
Ar led to slower spinup owing to an increase in distance (rela-
tive to the thermal radius) for parcels to travel from thermal
bottom to near top, meaning that core buoyancy was eroded
more slowly by entrainment. Values of s were similar among
the simulations and ranged from 1.63 to 1.95, somewhat less
than the theoretical s ’ 2 based on the flow similarity be-
tween the thermals and Hill’s vortex. This work also provided
an explanation for why initially spherical thermals (Ar 5 1)
have a ’ 0.15, which occurs because of the similarity of ther-
mal flow to Hill’s vortex. This gives s ’ 2 and constrains the
proportionality constant in the a ~A21

r relation to ’0.15. We
emphasize that changes in zc do not cause changes in a, but
larger a is associated with lower zc, and both are controlled
by the erosion of buoyancy along the thermal’s vertical axis
driven by entrainment of nonbuoyant fluid. This process also
dictates changes in circulation that are consistent with thermal
spreading rates via the thermal impulse–circulation relation.

This study has elucidated factors controlling the spreading
rate of dry buoyant thermals. This work is relevant to buoy-
antly driven atmospheric flows, especially those with a local-
ized pulse source of buoyancy or steady source that leads to a
chain of multiple thermals. In particular, numerous studies
have noted the importance of buoyant thermals for cumulus
convection in the atmosphere (e.g., Blyth et al. 2005; Damiani
et al. 2006; Sherwood et al. 2013; Romps and Charn 2015;
Hernandez-Deckers and Sherwood 2018; Morrison et al.
2020; Peters et al. 2020). Spreading rates of dry thermals may
also indirectly impact cumulus entrainment rates by influenc-
ing the size of thermals at cloud base (Mulholland et al. 2021).
Although Vybhav and Ravichandran (2022) suggested similar
growth rates for dry and moist (cloud) thermals, Morrison
et al. (2021) found that the spreading rate of moist thermals
was almost a factor of 2 smaller than dry thermals for

conditions typical of cumulus convection in the lower and
middle troposphere. It is unclear how results from the current
study might translate to cumulus thermals, given the impact
of latent heating and cooling on their buoyancy distributions.
Moreover, for buoyantly driven atmospheric flows at scales
of interest, dry and moist thermals are generally turbulent.
Nikulin (2014) suggested that the effects of turbulent stresses
can be considered as an additional term leading to a small in-
crease in a. This is supported by the recent numerical modeling
studies of LJ2019 and Morrison et al. (2022), although they
demonstrated an order-of-magnitude larger impact on a than
Nikulin (2014) (;20%–40% versus a few percent). Future
work should refine understanding of the entrainment behavior
and spreading rates for dry and moist turbulent thermals.
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APPENDIX

List of Symbols

a Radius of Hill’s vortex
A Thermal cross-sectional area
Ar Initial thermal aspect ratio
b Parameter defined by the ratio e to a

B Buoyancy
Bc Core buoyancy along the thermal’s vertical axis
Beff Effective buoyancy
Cd Dynamic drag coefficient
Cy Virtual mass parameter
D Distance traveled by the vortex as a whole over time

period Dt
D0 Initial thermal vertical length
e Entrainment efficiency
E Momentum entrainment
Eu Euler number
f Fractional distance from vortex center where the par-

cel is initiated relative to radius a
Fd Thermal-averaged pressure drag force
Fr Froude number
FpB Thermal-averaged buoyant pressure drag force
FpD Thermal-averaged dynamic pressure drag force
g Gravitational acceleration
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I Fluid impulse
Iz Fluid impulse in the z direction
k̂ Unit vector in the vertical
k1 Integration constant
m Shape parameter defined as the ratio of V to R3

p Pressure
n̂ Unit vector normal to the thermal’s surface
u Fluid velocity vector
uaxi Regridded radial velocity in cylindrical coordinates
ub Displacement rate of thermal boundary
ue Effective entrainment velocity
r Radial direction in axisymmetric coordinates
R Thermal radius
Re Reynolds number
Ry Ring vortex radius
S Region defined by circuit passing through the thermal

core and returning through the ambient fluid
t Time
V Thermal volume
w Fluid vertical velocity
W Velocity of Hill’s vortex
waxi Regridded vertical velocity in cylindrical coordinates
wp Vertical velocity of a parcel along its Lagrangian path
wt Vertical velocity of thermal top
z Height
zbs Height at the bottom of region S
zc Thermal top height at spinup
zt Height of thermal top
zts Height at the top of region S
a Rate of increase in thermal radius with height as the

thermal rises, equivalent to dR/dz
g Thermal shape parameter defined as the ratio AR/V
G Thermal circulation
DLm Grid spacing of the numerical model
Dt Time for parcel to travel from near vortex bottom to

near its top
e Fractional entrainment rate
hy Horizontal vorticity in the y direction
vf Azimuthal vorticity
V Region of space occupied by thermal
c Streamfunction
u Potential temperature
r Fluid density
r0 Constant background fluid density
s Ratio of time-averaged vertical velocities of the parcel

and thermal top
tc Time scale for thermal top to reach zc
z Ratio of ring vortex radius to thermal radius
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