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ABSTRACT: This study uses theory and numerical simulations to analyze the nondimensional spreading rate « (change
in radius with height) of buoyant thermals as they rise and entrain surrounding environmental fluid. A focus is on how «
varies with initial thermal aspect ratio A,, defined as height divided by width of the initial buoyancy perturbation. An ana-
lytic equation for thermal ascent rate w, that depends on « is derived from the thermal-volume-averaged momentum bud-
get equation. The thermal top height when w, is maximum, defining a critical height z, is inversely proportional to «. The
height z. also corresponds to the thermal top height when buoyant fluid along the thermal’s vertical axis is fully replaced
by entrained nonbuoyant environmental fluid rising from below the thermal. The time scale for this process is controlled
by the vertical velocity of parcels rising upward through the thermal’s core. This parcel vertical velocity is approximated
from Hill’s analytic spherical vortex, yielding an analytic inverse relation between a and A,. Physically, this a—A, relation is
connected to changes in circulation as A, is modified. Numerical simulations of thermals with A, varied from 0.5 to 2 give «
values close to the analytic theoretical relation, with a factor of ~3 decrease in « as A, is increased from 0.5 to 2. The the-
ory also explains why « of initially spherical thermals from past laboratory and modeling studies is about 0.15. Overall, this
study provides a theoretical underpinning for understanding the entrainment behavior of thermals, relevant to buoyantly
driven atmospheric flows.

SIGNIFICANCE STATEMENT: Thermals, which are coherent, quasi-spherical regions of upward-moving buoyant
fluid, are a key feature of many convective atmospheric flows. The purpose of this study is to characterize how thermals
entrain surrounding fluid and spread out as they rise. We use theory and numerical modeling to explain why entrain-
ment rate decreases with an increase in the initial thermal aspect ratio—the ratio of height to width. This work also ex-
plains why the nondimensional spreading rate (change in thermal radius with height) of initially spherical thermals
from past laboratory and numerical modeling studies is about 0.15. Overall, this work provides a framework for concep-
tualizing the entrainment behavior of thermals and thus improved understanding of vertical transport in convective at-
mospheric flows.
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1. Introduction the paper are defined in the appendix.) Numerous laboratory
and numerical modeling studies have supported this basic
scaling (e.g., Scorer 1957; Richards 1961; Bond and Johari
2005; Zhao et al. 2013; Lai et al. 2015; Lecoanet and Jeevanjee
2019, hereinafter LJ2019; McKim et al. 2020; Morrison et al.
2021).

The rate of increase in R is closely related to the entrain-
ment rate of thermals. From L.J2019, a thermal net fractional
entrainment rate is defined as € = d(InV)/dz,, where V is the
thermal volume. Combined with self-similarity, this gives
€ = 3a/R, where o = dR/dz,. We emphasize that € in this case
is a net fractional entrainment rate because thermal volume is
impacted by both entrainment (inflow of environmental fluid)

! Note that constant dR/dz, following self-similarity and dimen-  and detrainment (outflow of thermal fluid). However, LJ2019
sional analysis is valid when there are no other physical length ¢}, e that detrainment is negligible for both laminar and
scales. It follows that this scaling applies to dry thermals in an un- . . .
stratified environment within an infinite domain. turbulent dry, initially spherical thermals in a neutrally stable

environment. Thus, € provides a close approximation for total
entrainment in such conditions. An entrainment efficiency can
also be defined as e = €R, which gives e = 3a for self-similar

Corresponding author: Hugh Morrison, morrison@ucar.edu thermals.

Thermals—coherent, isolated, quasi-spherical regions of
upward-moving buoyant fluid—are a common feature of con-
vective atmospheric flows. A key characteristic of thermals is
the rate at which they increase in size as they ascend owing
to entrainment of the surrounding fluid. Assuming thermal
shape is self-similar (meaning that thermals do not change
shape over time), dimensional analysis shows that thermal ra-
dius R is proportional to thermal top height z,, that is, dR/dz,
is constant! (e.g., Scorer 1957). (Note that all symbols used in
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Thermals entrain by a process of drawing in fluid mainly
from below the thermal (e.g., LJ2019; Zhao et al. 2013;
McKim et al. 2020; Morrison et al. 2021). As a thermal spins
up, buoyancy becomes concentrated near the center of rotation
in the thermal’s toroidal circulation (i.e., vortex ring core); see
Fig. 1 for a schematic of thermal structure. As a result, there is
baroclinic generation of buoyancy on the outside edge of the
vortex ring and destruction on the inside edge that lead to a
spreading of the vortex (McKim et al. 2020). Moreover, with-
out buoyant fluid present along the thermal’s vertical axis,
circulation is nearly constant. This implies a basic constraint
on the spreading rate of thermals following the principle of
momentum conservation (Turner 1957). Specifically, buoyant
vortex rings (which form the core of thermals) must expand
over time to conserve momentum, with the rate of spread de-
termined by the thermal-integrated buoyant forcing and the
circulation. McKim et al. (2020) combined the buoyant vor-
tex ring argument of Turner (1957) with the thermal’s verti-
cal momentum equation to derive an analytic model for the
vertical velocity of thermal top w,, R, and buoyancy B at any
time past spinup that does not rely on empirically determined
parameters, provided w,, R, and B are known at the time
when the thermal is spun up.

While the basic mechanism of thermal entrainment and
spreading is well understood, factors controlling the spreading
rate are not. Lai et al. (2015) combined a relation between cir-
culation, impulse (related to time-integrated buoyant forcing),
and thermal spreading rate with an empirical power-law rela-
tion between normalized circulation and initial thermal aspect
ratio A, to predict a from A,. They showed that variations in
A, for spheroidal thermals from ~0.5 to 2 lead to substantial
variability in «, from about 0.1 to 0.3. These results are consis-
tent with laboratory experiments reporting a similar range of
a (e.g., Scorer 1957; Escudier and Maxworthy 1973; Bond and
Johari 2005, 2010; Zhao et al. 2013). A consensus from labora-
tory and numerical modeling studies is that a ~ 0.12-0.18 for
initially spherical thermals in an unstratified environment (e.g.,
LJ2019; Bond and Johari 2010; Zhao et al. 2013; Lai et al. 2015).
Values are ~0.2-0.3 for initially oblate thermals with A, < 1
and smaller for prolate thermals with A, > 1, ~0.1-0.15 (see
Fig. 17 of Lai et al. 2015). There is little sensitivity of « to initial
aspect ratio for A, > 2 (Bond and Johari 2005). Modifying
other aspects of thermal initial conditions can also produce
variability in «, such as having an initial circulation (Escudier
and Maxworthy 1973). Note that « may also depend on the
Reynolds number R, of the flow, although 1.J2019 showed
with direct numerical simulation (DNS) that the basic mecha-
nism of entrainment is the same for laminar and turbulent
thermals (R, of 630 and 6300, respectively), and « was only
~20% higher for turbulent thermals. Their results indicate
that turbulence is not necessary for entrainment and that the
primary mechanism for entrainment is organized inflow con-
trolled by the thermal’s buoyancy distribution.

The above discussion raises two important science ques-
tions. First, why do initially spherical thermals in an unstrati-
fied environment (and initially motionless) have a ~ 0.15?
Why this particular value, and what are the physical mecha-
nisms explaining it? Second, why does the spreading rate of
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FIG. 1. Schematic diagram of a vertical cross section through the
thermal center. The central vertical axis is indicated by the dashed
line. Red X symbols mark the center of circulation comprising the
vortex ring core with radius R,. After spinup, the region of nonzero
buoyancy indicated by blue shading is confined to the vortex ring
core. Baroclinic generation and destruction of vorticity associated
with this buoyancy structure leads to outward spreading of the
vortex ring structure and thermal as a whole as shown by the red
arrows. Black curved lines illustrate streamfunction isolines (only
shown for the right half of the thermal). The thermal boundary,
which is also a streamfunction isoline, is indicated by the curved
blue line. This boundary also defines the thermal radius R.

thermals as they rise («) increase as their initial aspect (A4,) is
decreased? To our knowledge, all previous studies have relied
in some way on empirical constraint to obtain parameters,
from either laboratory experiments or numerical modeling, at
least during the spinup phase which is crucial for predicting «.
In this study, we derive an expression for « as a function of A,
that does not rely on such empirically determined parameters.
The goal is to predict o from A, from the basic equations to
provide a theoretical underpinning for understanding factors
controlling the thermal spreading rate. The predicted values
of a are compared to those obtained from numerical simula-
tions of thermals over a range of A,.

In the theoretical part, we first derive an analytic expression
for thermal ascent rate w, from the nondimensional thermal
momentum budget equation. We then use this expression to
derive an analytic relation between « and the thermal spinup
height z. (defined as the thermal top height when w, reaches a
maximum), valid over a range of initial thermal aspect ratios.
We show that z. also corresponds to the time for parcels ini-
tially near the thermal bottom to ascend through the thermal
core to near the thermal top. This determines the time for
buoyancy to be removed from the central thermal core by en-
trainment of nonbuoyant environmental fluid, after which cir-
culation is nearly constant. This time scale for thermal spinup
depends linearly on A, and is determined by the thermal’s in-
ternal flow structure which is well modeled by Hill’s analytic
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spherical vortex (Hill 1894) even for nonspherical thermals.
We show that the predicted values of w,, «, and z. are consis-
tent with numerical simulations of buoyant thermals over a
range of A, from 0.5 to 2.

The paper is organized as follows. Section 2 provides a the-
oretical description of the problem and derivation of equations
for w, and a. Section 3 gives a description of the numerical model
and experimental design. Section 4 presents results from the nu-
merical simulations and comparison of these results with theory.
A summary and conclusions are given in section 5.

2. Theoretical description

We first write the basic governing equations that set the stage
for the rest of the derivation. These are the incompressible
Boussinesq—Euler equations for fluid motion and mass continu-
ity plus the conservation equation for perturbation fluid density:

du —1 P o»
4+ u- = — — ok 1
o, TuVu=—p, Vp PR (1)
V-u=0, )
ap’
—+u-Vp'=0 3
o Tuve =0, 3)

where ¢ is the time, u is the velocity vector, K is a unit vector
pointed in the vertical (opposite to the direction of gravita-
tional acceleration), p is the pressure, py is a constant back-
ground fluid density, p’ is a perturbation fluid density from
the background density, and g is the gravitational accelera-
tion. Here, the environment is assumed to be neutrally stable;
for inviscid flow in a neutrally stable environment and apply-
ing the incompressible Boussinesq approximation, the pertur-
bation density acts as a fluid tracer with no sources or sinks.
In the following, we use buoyancy defined as B = —gp’/po.

a. Thermal momentum budget

To derive our analytic thermal model and theoretical values
for «, we first focus on the vertical momentum budget of ther-
mals. This allows us to derive an analytic expression for the
thermal ascent rate, from which we obtain expressions for
thermal spreading rate « later. Defining the thermal as occu-
pying some portion of space defined by ) within the domain,
we can integrate over () to obtain the thermal’s budget of ver-
tical momentum pyw, where w is the vertical velocity. Because
) changes over time, we use Gauss’s theorem to relate the
divergence of the momentum field over ) to the flux of mo-
mentum across the surface of ) (Romps and Charn 2015;
Morrison et al. 2022):

d )
—I powd3x = —J Py + J pOBd3x
dt J o) a9z Q)
o[ e, 4)
Q1)

where 9Q)(¢) is the two-dimensional boundary of Q(¢), i is a
unit vector normal to the thermal’s surface, and u, is an effec-
tive entrainment velocity defined as the displacement rate of
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the thermal boundary wu, relative to flow velocity u, i.e., u, =
u, — u

Defining w = V! fnmwcﬁx as the thermal-averaged w (as-
sumed to be equal to the thermal top ascent rate w,) in (4), us-
ing the product rule d(w,V)/dt = Vdw,/dt + w,dVIdt, dividing
by thermal volume V, and rearranging terms, we express the
thermal-averaged momentum budget as

dw _
pod—;=—Fd+E+pOB, 5)

where F, = V’lfﬂ([)(ap/az)d% is the thermal-averaged pres-
sure drag force, E = V’ljm([)(ﬁ “u,)pgwd’x = V-1 (dVidow,p,
is the momentum entrainment, and B = V’ljm Bd’x is the
thermal-averaged buoyancy. Equation (5) expresses the verti-
cal momentum budget of a thermal as an acceleration term on
the left-hand side and a drag force arising from vertical pres-
sure gradients, an entrainment “pseudoforce,” and a buoyant
forcing term on the right-hand side.

We assume that detrainment is negligible and that thermal
expansion incorporates fluid with w = 0. Thus, net entrain-
ment is related only to the change in thermal volume (follow-
ing the Boussinesq approximation). This assumption is well
justified based on the DNS of dry thermals from LJ2019; see
Morrison et al. (2022) for further discussion. It follows that
we can write the entrainment term as E ~ —V_l(dV/dt)erO,
where V~1(dV/dt) = (dInV/dz,)w, = ew, using the chain rule.
Thus, we can express E ~ —ew?p,,.

We nondimensionalize the thermal momentum equation
next. Based on a characteristic background fluid density
po, thermal radius R,, and thermal buoyancy B,, we can
define various scales including time ¢, = /R /B,, velocity
wy = /R, B,, and pressure py = poBo/Ro. From this, we write
= t/t,, "= Z/R,, w' = wiw,, F,= (Ry/py)F ;5 E' = EIE,
= [Ry/(pyw})]E, and B* = B/B,,. Substituting these relations
into the thermal-averaged momentum budget gives a nondi-
mensional form of the equation:

Py dw; Wy B (6)
00 .
0

R

- _Po

dr* R

*
F, +

0 0

Multiplying (6) by RO/(W%pO), it can be expressed in terms
of two nondimensional flow parameters: Froude number
F, = w}/(ByR,) and Euler number E, = p,/(p,w3). This gives

s~ EF

d*
Wt:_EF u” pD

dr u-p

+E +F'B, )

where the nondimensional drag force F is divided into two
parts following the standard separation of perturbation pressure
into buoyant and dynamic components: F; = F,; + F,p,. The
buoyant part is approximated by E,F,; ~ F,'(1 — C,)B . The
term C, is a virtual mass parameter defined such that the sum
of F,'B and —E,F,p is equal to F;'C,B . C, depends on the
structure of the buoyancy field. For example, C, = 2/3 for a
spherical buoyancy perturbation (Tarshish et al. 2018). It follows
that the nondimensional effective buoyancy—the sum of buo;/-
ancy and buoyant perturbation pressure forcing—is B,y = C,B .
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We approximate the dynamic pressure part of thermal drag us-
ing the standard drag equation divided by V to give a volume-
averaged dynamic pressure drag force: FpD = P()sz C,AI2V),
where A is the cross-sectional thermal area perpendicular to the
flow. Defining vy as the ratio AR/V, which is a constant for self-
similar thermals (y = 3/4 for a spherical thermal), we can express
the thermal-averaged nondimensional dynamic pressure drag
force as F,, = w,>yC,/(2R"). Note that C; ~ 0 for initially
spherical (A, = 1) dry buoyant thermals (Morrison et al. 2022).
Although C, could in principle vary with A,, the thermal simula-
tions presented in section 4, with A, varying from 0.5 to 2, all
have small C,; (magnitude less than 0.1). Thus, the dynamic pres-
sure drag is relatively unimportant in the thermal momentum
budget. Nonetheless, we retain this term and C, in the equations
for generality.

Hereinafter, we take characteristic values of the physical
scales pg, Ry, and By as unity so that . = 1 and E,, = 1 and drop
the * indicating nondimensional quantities for convenience. It
follows that we can write the nondimensional thermal-averaged
vertical momentum budget equation given by (7) as

1dw?

2 4 wle +
2dz, !

“/dezz _

C,B =0, (8)

where we have used the above relations for £ and buoyant
and dynamic pressure contributions to drag, and the chain rule
to express the time derivative as a height derivative following
the thermal top: d/dt = w,dldz, (z, is the thermal top height).

If we assume « = dR/dz, is constant, consistent with recent nu-
merical modeling studies (Morrison et al. 2021; L.J2019) and the
simulations herein, we can write R = Ry + az, = 1 + az, by inte-
grating a from z] = 0 to z] = z,. Also, B = B,/R* = 1/R® (since
we take By = 1 as the initial buoyancy scale, and B scales inversely
with the change in thermal volume as the thermal entrains non-
buoyant environmental fluid and expands) and € = ¢/R (1.J2019).
With these assumptions and relations, (8) may be written as

yCd) w? C ©)

—_ p— v — 0
2 /(0 +ez) (1+az)

Assuming «, e, C,, v, and C, are constants, (9) represents a
first-order linear differential equation with an exact solution
given by

CU (2ela)—(yC,la)

w? = y + k(1 +az,) .
(e —a+t Ecd)(l +az,)

(10)
where k is a constant of integration. Given the boundary con-

dition w, = 0 at z;, = 0, we may solve for k; and use this in
(10) to give

2 _ CU

wy = by
(6 —a+ zcd)(l + azl)Z

(e —a+ %Cd)(l + azl)(ze/u”(yc"/a)
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FIG. 2. Analytic solutions to the thermal w, Eq. (11) as a function
of nondimensional thermal top height z,. Different color lines indi-
cate assumed values of thermal expansion rate « as labeled. Black
dotted and dashed black lines illustrate scalings from the asymp-
totic analysis corresponding to the “slippery” regime during ther-
mal spinup and “sticky” regime after spinup, respectively. The *
symbols indicate the height and magnitude of maximum w, for
each curve.

Equation (11) is similar to Escudier and Maxworthy [1973,
Egs. (9)—(11) therein], except that we invoke the Boussinesq
approximation, express w, using a single analytic equation as
a function of height z, rather than ¢, and include an explicit de-
pendence on a.

Solutions for w, can be obtained from (11), provided values
of a, e, v, Cy4, and C, are known. Past literature has suggested
a ~ 0.05-0.3 (Lai et al. 2015), e ~ 3 (1J2019), C, ~ 0 (Morrison
et al. 2022), meaning that vy is not relevant, and C, ~ 0.5-0.8
(Tarshish et al. 2018). Examples of solutions to the analytic
w, Eq. (11) using e = 3a, C; = 0, C,, = 2/3, and « ranging
from 0.05 to 0.3 are shown in Fig. 2 (solid lines). With these
parameter values, (11) gives a family of solutions that all ex-
hibit a sharp increase of w, with height initially corresponding
to a “slippery” regime when upward buoyant forcing is pri-
marily balanced by vertical acceleration, followed by a slower
decrease of w, corresponding to a “sticky” regime when weak
buoyant forcing is balanced mainly by entrainment.” This shape
of the w, profile with the two distinct regimes of thermal evolu-
tion was discussed previously via analysis of numerical solutions
(e.g., Wang 1971; Tarshish et al. 2018). In subsequent sections,
we will determine constraints on values of o while also briefly
exploring how e and C,, vary with the initial thermal aspect ratio.

We can understand scaling behaviors in the slippery and
sticky regimes via asymptotic analysis and expansion of (11),
similar to the asymptotic analysis of Escudier and Maxworthy
(1973) applied to their equation set for w,. For the slippery re-
gime when z, < 1, we can expand (11) using Taylor series

2 Note that the sticky regime is primarily a balance between en-
trainment and buoyant forcing for dry thermals, whereas Romps
and Charn (2015) identified a sticky regime for cloud thermals
consisting mainly of a balance primarily between buoyant forcing
and downward pressure gradient forcing.
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about z, = 0 and retain the first-order term to give w, = z}2.
This is equivalent to a scaling of z, « > since w, = dz,/dt, which
is consistent with the theory and numerical simulations in the
slippery regime from Tarshish et al. (2018).

In contrast, when z, => 1 for the sticky regime, 1 + az, =~ az,
and the second term on the right-hand side of (11) is negligible
compared to the first term (for 2e/a + yC,/2 > 2, which is satis-
fied for typical values of 2e/a ~ 6 and yC,; =~ 0), implying a scal-
ing of w, with z, 1. This is equivalent to a scaling of z, = 2,
consistent with the theory and simulations of LJ2019 for the
sticky regime. These scaling regimes well correspond to full solu-
tions of the analytic w, equation, Eq. (11), for small and large z,
as seen in Fig. 2 and are also consistent with the asymptotic anal-
ysis from Escudier and Maxworthy (1973).

b. Impulse, circulation, and thermal spreading rate

Although (11) accounts for the impact of thermal spreading
rate a on w, via entrainment, by itself it does constrain «.
However, the thermal momentum budget can provide a basic
constraint on « via the impulse—circulation relation (e.g.,
Turner 1957; Lai et al. 2015; McKim et al. 2020; Morrison et al.
2021). A thermal’s circulation I" can be calculated as the inte-
gral of velocity along a circuit dS passing through the thermal
center and returning through the ambient fluid or equiva-
lently as an area integral of vorticity over a region S bounded
by the circuit dS. If we assume axisymmetry, this area integral
can be expressed as the integral of azimuthal vorticity wy, over
S in axisymmetric (7, z) coordinates (McKim et al. 2020):

F:jgwdl:de)drdz. (12)
a8 s
The time rate of change of circulation is given by
dr B Zis
=] -2 = B 1
dt L ar drdz Lbs &2 (13)

for an inviscid fluid, where B, is the buoyancy along the ther-
mal’s vertical axis, z,s and zs are the bottom and top heights
of region S, and the region with B, > 0 is assumed to be en-
compassed within S (hereinafter when writing this integral,
we drop the limits zy,s and z for convenience). In words, (13)
shows that the rate of increase in I' during spinup is equal to
the vertical integral of core buoyancy.

We can directly relate I' to « via the impulse—circulation re-
lation. Fluid impulse / is the total momentum change starting
from rest caused by external forcing over a finite region of
space. For an idealized infinite domain in the absence of non-
conservative forces and applying the incompressible Boussinesq
approximation, / is related to vorticity w by (e.g., Batchelor
2000)

= Po

2O x X odx,
2y

(14)
where V is the entire domain and x is a position vector. The
term / is essentially a record of the volume- and time-integrated
external (here, gravitational via a localized buoyancy anomaly)
forcing on the fluid. If the region of nonzero vorticity within the
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domain is concentrated on a circle with a radius equal to R,
(i.e., the vortex ring radius, see Fig. 1), and this region of vortic-
ity is small compared to R,, then (14) can be approximated us-
ing the second part of (12) as (Turner 1957; McKim et al. 2020)

I, = wp, TR (15)

The subscript “z” indicates that the impulse is only in the z di-

rection as a consequence of the axisymmetry of the flow.
Taking d/dt of (15), we have

= Fp, (16)

dr dR,%)
v dt dt

—£ = 7Tp0(R2— +T

where Fp is the domain-integrated buoyant forcing, which is
constant in time following (3) in a neutrally stable environment.

Equation (16) can be directly related to « using the chain
rule d/dt = wdldz, to give dR?/dt = {*dR?/dt = 2{* Rw, ., where
¢ is the ratio of the vortex radius to the thermal radius and as-
sumed to be constant following self-similarity but may vary with
A,. Substituting this relation for dR2/dt in (16) and substituting
(13) for dI'/dt, we have

prgZRZJBC dz + 2mp, T Rw,a = Fy. (17)

The physical interpretation of (13)-(17) is that if there is no
buoyancy along the thermal’s vertical axis (B, = 0), then
there is no change in the thermal’s circulation with time
(dU'/dt = 0) and the first term on the left-hand side of (17) is
zero. The removal of buoyancy along the thermal’s vertical axis
by the upward encroachment of nonbuoyant environmental
fluid entrained from below the thermal corresponds to the point
of thermal spinup. With Fz > 0, B. = 0 implies a > 0 in the sec-
ond term since £, R, and w, are all >0. This is consistent with
the basic argument from Turner (1957) and McKim et al.
(2020) explaining how the impulse—circulation relation dictates
a positive thermal expansion rate when dl'/dt = 0 and Fp > 0.
Moreover, Fp is constant as noted above, and self-similarity im-
plies a and { are constants and R « z,. This gives w, =z, L
which is consistent with the scaling from our analytic w, equa-
tion, Eq. (11), in the “sticky” regime where z, >> 1. During the
spinup phase corresponding to the “slippery” regime, B. > 0
and the first term on the left-hand side of (17) > 0. This implies
that the second term on the left-hand side of (17) must be
smaller before spinup than after.

If I' is known when the thermal is spun up, we can derive
an analytic expression for a by combining (15) and (17) with
the relation between a thermal’s impulse and w, (Akhmetov
2009; McKim et al. 2020): I, = mR3py(1 + C,)w,, where m is a
shape parameter equal to the ratio of thermal volume to R>.
This is analogous to Eq. (17) in McKim et al. (2020), who ex-
pressed e (rather than «) in terms of ¢, Fg, I', C,,, and m. All of
these parameters likely depend on A,. For example, the virtual
mass coefficient C, depends on the thermal shape (Tarshish
et al. 2018), while I" (after spinup) has a strongly nonlinear de-
pendence on A, as we show in section 4 from the thermal nu-
merical simulations. Such dependencies are broadly consistent
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FIG. 3. Solutions to the analytic a—z, relation (18) with (a) C;, = 0 and varying b as indicated and (b) b = 3 and
varying C, as indicated.

with sensitivity of « to A, but complicate the interpretation and
explanation of this sensitivity.

These complications motivate an alternative approach de-
scribed below that relates « to the thermal top height when
spinup is achieved, corresponding to the thermal top height
when w, reaches its maximum. This is in a similar vein as relat-
ing a (ore) to ¢, Fg, I', C,, and m, but with much simpler func-
tional dependencies allowing for a clear understanding of the
variation of o with A,.

¢. Relationship between thermal spinup height and
spreading rate o

We define a critical thermal top height z. separating the
“slippery” and “sticky” regimes when dw,/dz, = 0 and w, is a
maximum. During spinup, dw,/dz, > 0 as dI'/dt > 0 owing to
the presence of buoyant fluid along the thermal’s vertical axis.
After buoyancy is eroded along the thermal’s vertical axis
from entrainment of environmental fluid, I" is constant follow-
ing (13), and thus, dw/dz, < 0 following the w, = z; ! scaling
implied by (17). Taken together, the implication is that z.. cor-
responds to the thermal top height at the time when core
buoyancy is eroded and thereafter dI'/dt ~ 0, which is sup-
ported by the numerical simulations presented in section 4.

The critical height z. is obtained by taking d/dz, of (11) and
setting dw,/dz, = 0. We also introduce the parameter b = e/a,
the ratio of entrainment efficiency to thermal spreading rate.
The resulting expression is solved analytically to yield the fol-
lowing relation between z., , b, vy, and Cy:

(b + V—Cd)(l + az,) OGO < (18)

2a

Figure 3 shows «a calculated from (18) as a function of z. for b
equal to 2, 2.5, and 3 and C, = 0 (Fig. 3a) and for C, equal to

Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 12/06/23 03:56 PM UTC

—0.1, 0, and 0.1 and b = 3 (Fig. 3b). For these calculations,
vy = 3/4 corresponding to spherical thermals for simplicity. A
self-similar thermal shape implies b = 3, meaning that e = 3«
and € = d(InV)/dz, = 3a/R (LJ2019). Deviations from b = 3,
therefore, indicate the degree to which thermals are not self-
similar. Zhao et al. (2013), while noting self-similarity of gross
thermal characteristics (overall thermal shape and size) after
spinup, found that internal vorticity and density structures
evolved nonsimilarly in their experimental study. In the simu-
lations presented later in the current paper, b is somewhat
smaller than 3, ranging from ~2.4 to 2.7 for A, < 2. For the
A, = 2 simulation, b ~ 2.1, indicating that initially vertically
elongated thermals change their shape relatively more than
the smaller A, thermals. This may be related to the inability
of thermals to take in all initially buoyant fluid when A, = 2,
leaving a wake of buoyant fluid below the thermal, as dis-
cussed in Lai et al. (2015). Nonetheless, sensitivity of « to b
over the range of 2-3 is fairly small, with a 24% decrease in «
as b is increased from 2 to 3.

The change in « for a given z. as C, is varied from —0.1 to
0.1 is small in magnitude, with « varying by up to 0.04 for
the range of parameters shown in Fig. 3b. The relative
change is greatest at small values of a (large z.), up to
~50% in Fig. 3b. For the thermal numerical simulations de-
tailed later in the paper, with A, varying from 0.5 to 2, mean
C, ranges from —0.06 to 0.08 [using the same method to cal-
culate C, from the simulated dynamic perturbation pressure
field as in Morrison et al. (2022)]. Thus, dynamic pressure
drag is relatively unimportant in (18), and hereinafter, we
will assume C,; = 0. With this assumption, (18) can be rear-
ranged to give

bl/(2h72) -1

o =

" (19)

c
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If we further assume a self-similar thermal shape, we can use
(19) with b = 3 to obtain

31/4_1
oq = —"
Z

(20)

c

The one-to-one relationship between « and z,. means that if z..
is known, this uniquely constrains the value of «. We empha-
size that z. does not cause a particular value of «, but if z. is
known, then « can be predicted from it. A key point is that
the expressions for « in (18)—(20) are independent of C, and
thus expected to have little dependence on A, (given that b
does not vary much with A, and C; ~ 0). Equation (20) gives
consistent results with the analytic thermal w, profiles shown
in Fig. 2, which have z. ranging from ~1 to 6 for « of 0.05-0.3
(forb = 3 and C,; = 0).

d. Relationship between z.and A,

As argued in the previous subsection, z. corresponds to the
thermal top height when buoyant fluid along the thermal’s
vertical axis is replaced by entrained environmental fluid
(meaning circulation is approximately constant thereafter).
This erosion of buoyancy in the thermal core occurs as non-
buoyant parcels are entrained near the thermal bottom and
move upward relative to the thermal as a whole. Thus, we ex-
pect the time scale for loss of buoyancy along the thermal’s
vertical axis to be equal to the time for parcels entrained near
the thermal bottom to travel upward through the thermal.

A parcel must travel a distance of the initial thermal depth
plus z. to ascend through the thermal in the same amount of
time as the thermal top takes to reach height z.. Since we can
express the initial thermal depth as Dy = 2A, (keeping in
mind Ry = 1), this time scale is

T = ¥, (21)

where w | is the time-averaged parcel vertical velocity along
its Lagrangian path: w, = TJIJ(;L wp(z)dt. By definition, thi§ is
the same time scale for the thermal top to reach z. (starting
from z, = 0), implying

3]

[

; (22)

_,
I
=

t

where w, =17, 1%" w,(f)dt is the time-averaged thermal top
vertical velocity.
Substituting (21) in (22) and solving for z,. gives

K (23)

where o=w_/w, is the ratio of the time-averaged vertical
velocities of the parcel and thermal top.

Equation (23) can be combined with (19) to yield an ex-
pression for « as a function of A,:

(bl/(zb—z) _ 1)(0 -1
24, ‘

o =

(24)
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If we take b = 3 following self-similarity, this gives

@™ -1 -1
24, ‘

(25)

e. Predicting o from Hill’s analytic spherical vortex

The thermal aspect ratio A, is specified from the initial con-
ditions, leaving o as the only unknown parameter in (25) to
obtain «. This parameter is closely related to the thermal in-
ternal flow structure, which controls the rate of parcel ascent
in the thermal core relative to the thermal as a whole. Lai et al.
(2015) noted similarity of the flow structure of thermals to
Hill’s vortex, particular for A, = 2. They found that the ana-
Iytic Hill’s vortex solution deviated more from numerical
thermal simulations for smaller A,, but noted “it can still give
a fair prediction of flow field” for A, as low as 0.5. In agree-
ment with Lai et al. (2015), in section 4, we show a close cor-
respondence of vertical velocity profiles along the central axis
in numerically simulated thermals to Hill’s vortex for initial
A, of 1 and 2, with more deviation but still fairly similar w
profiles for A, = 0.5.

Given the overall similarity of Hill’s analytic vortex with
the internal flow of thermals, we can approximate o from the
vertical profile of w in the core of Hill’s vortex. The w field
within Hill’s vortex is given by

W

wir, 2) = —

) +f) - ] Firza (6

a

in axisymmetric coordinates, where a is the vortex radius and
W is the steady vortex ascent rate. The flow outside of the
vortex is given by

Wad (222 — 1)
222+ )7

w(r, z) = V2 + 2 >a. 27

Along the vertical axis (r = 0), the w profile is symmetric and
features an increase in the bottom half of the vortex, a maxi-
mum w equal to 5/2W at z = 0, and a decrease in the upper
half.

A parcel initially at the bottom of Hill’s vortex will rise at
the same rate as the vortex since u = 0 and w = W at this lo-
cation (i.e., it is a stagnation point in the vortex-relative flow).
However, a parcel initially just above the vortex bottom at
r = 0 will rise relative to the vortex as a whole. Thermals, ow-
ing to their buoyancy, entrainment, and nonsteady behavior,
do not have such stagnation points, and parcels initiated at
the thermal bottom rise through the thermal depth as demon-
strated by the simulations in section 4. Thermal flow is similar
to Hill’s vortex in the interior. Thus, although parcel ascent
differs between thermals and Hill’s vortex near the top and
bottom boundaries, it is similar in the interior with an acceler-
ation toward the center followed by a deceleration above.

Because of the stagnation points in Hill’s vortex, we cannot
use it directly to estimate the Lagrangian time scale for parcel
ascent starting from the thermal bottom. However, given sim-
ilarity of the interior flow between thermals and Hill’s vortex,



2718

a rough approximation is to replace the Lagrangian time-
mean w along the parcel’s path with the Eulerian vertical-
mean w from Hill’s vortex: w, ~ (2a)7! :in w(z)dz = 2W,
where w(z) is from (26) with r = 0. This gives o =w /W ~ 2,
which is expected to be an upper estimate since the La-
grangian mean weights toward smaller values of w com-
pared to the Eulerian mean. Additional context for this
approach is provided by analysis of the thermal numerical
simulations. Comparing the Lagrangian mean w,, for a parcel ini-
tiated at the thermal bottom versus the time-averaged Eulerian
mean w (from thermal bottom to top) during the spinup period
shows a close correspondence between the two, with relative dif-
ferences ranging from —6% to 14%. Furthermore, o values
from the simulations generally range from 1.80 to 1.95 (with the
exception of o =~ 1.63 in the A, = 2 simulation), close to but
slightly less than o = 2.

We can also calculate w_ from Hill’s vortex exactly for a
parcel initiated above the vortex bottom and ending the same
distance below vortex top. This is obtained from

w, = (D + 2fa)/At, (28)
where fis the fractional distance from the vortex center (z = 0)
where the parcel is initiated relative to its radius a, At is the time
for the parcel to travel along this path, and D = WAt is the distance
traveled by the vortex as a whole over At. The distance D + 2fa
is the total distance traveled by the parcel over its Lagrangian
path. Following a trajectory along r = 0, dz/dt = w(z) — W,
where z is height relative to the ascending vortex and w(z) — W
is the vortex-relative parcel velocity. The time scale for ascent is
calculated as :OA "dt = At = f:fafa [w(z) — W] ! dz. The inte-
gral on the right-hand side can be solved analytically by
substituting (26) for w(z) combined with r = 0 to yield

A= _327“[/ [In(1 - f) — In(1 + f)]. (29)

Combining (28) and (29) with D = WAt gives an expression
for W, and o is then obtained by dividing this expression by
W to give

o=1-3fIn(1 - f) — In(1 + £)]"%. (30)
A parcel initiated just above the vortex bottom, with f of
0.99-0.9 (i.e., initiated at a distance of 0.01-0.1 radii above the
thermal bottom and ending the same distance below top),
gives o of 1.6-1.9 consistent with the simulations.

Following discussion in Lai et al. (2015), the flow field of
the Norbury vortex family (Norbury 1973), which generalizes
Hill’s vortex to variable ring vortex thickness, may be closer
to the thermal simulations with varying A,. Similarly, the
O’Brien (1961) analytic spheroidal vortex model might give a
better description of the flow for spheroidal thermals. How-
ever, these models are steady state and also have stagnation
points. Since Hill’s vortex provides a reasonable description
of the interior thermal flow over a range of A,, we use it to
constrain o following the discussion above.
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Combining o ~ 2 from the Eulerian mean w of Hill’s vortex
with (19) and (23) gives our final theoretical expression for «
(with the assumption of self-similarity so that b = 3):

B"™ -1 0158
2A A

r r

G

o~

3. Description of the numerical simulations
a. Model description and experimental design

We utilize the Cloud Model 1 (CM1) fluid flow model to
numerically simulate thermals with varying initial A,. CM1
is a nonhydrostatic model which has been widely used to
simulate idealized atmospheric flows. Here, we use the in-
compressible Boussinesq configuration to solve the filtered
Navier-Stokes equations similar to the large-eddy simulation
(LES) configuration in Morrison et al. (2022). Prognostic varia-
bles are the 3D components of flow velocity and potential tem-
perature perturbation 6, although near-axisymmetry of the
model fields is retained. Buoyancy B is obtained by g6'/6,,
where 6, is a constant background 6 of the fluid environment.
As noted by Morrison et al. (2022), in this framework, prog-
nosing 6’ is equivalent to prognosing B itself. Simulations are
nondimensionalized using a length scale equal to the radius
of the initial thermal R, (the radius of the initial buoyancy
perturbation) and a time scale given by \/ROT , Where By is
the initial thermal buoyancy. The density scale py is equal to the
constant background fluid density in this Boussinesq framework.
All other quantities are nondimensionalized following these ba-
sic scales.

The initial A, of thermals is varied from 0.5 to 2, similar to
the range from Lai et al. (2015). As we show in section 4, this
produces a wide spread of « (~0.08-0.25). Thermals are initi-
ated by adding a buoyancy perturbation B uniformly within
a spheroidal volume having a horizontal radius of Ry and a
vertical radius of A,Ry. To minimize the impacts of boundary
conditions, the initial buoyancy perturbations are centered at
a height of 4R, and the horizontal domain width is =16R,
and the vertical domain height is 64A4,R, (64 times the initial
vertical thermal radius). The model grid is isotropic in all
three directions with a grid spacing AL,, equal to 0.14,R,.
Since the initial A, varies from 0.5 to 2, AL,, ranges from
0.05R, to 0.2R,. The time step is 0.0362 times the time scale
\/m. Because the thermals expand as they ascend, the
overall dynamical structure is well resolved with at least 10
grid points horizontally and 20 points vertically across the
thermals. An additional set of simulations with A, varying
from 0.5 to 2 but AL,, = 0.1R, (thus at least 20 points hori-
zontally and 10 points vertically across the thermals) was also
run and analyzed. This set gives similar results to the first set,
and thus, we only report the results of the first set of simula-
tions in this paper. Other details of the model setup are given
in Table 1.

In this study, we use LES applied to the filtered Navier—
Stokes equations instead of DNS to retain a close connec-
tion to atmospheric modeling, particularly modeling of dry
and moist thermals in the planetary boundary layer and
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TABLE 1. Configuration details for the CM1 simulations
presented in this paper.

Feature Configuration
Dynamics Incompressible Boussinesq
Number of horizontal grid points 320 X 320
Number of vertical grid points 640

Fifth-order WENO
Smagorinsky type
Periodic

Free slip and rigid

Advection

Subgrid-scale mixing

Lateral boundary conditions

Lower and upper boundary
conditions

convective clouds in which DNS is not possible given the
huge O(10°) Reynolds numbers involved. The LES frame-
work is also consistent with our previous work on dynamic
drag of dry buoyant thermals (Morrison et al. 2022) and
similar to previous thermal simulations of Lai et al. (2015).
The subgrid-scale (SGS) mixing follows a Smagorinsky-type
approach as implemented by Stevens et al. (1999, see their
appendix B, section b). The SGS mixing length is set to
AL,,. Because the dissipation scale (the model’s filter scale)
is a relatively large fraction of the thermals’ radii, the re-
solved scale flow is smooth and thus appears laminar. The
resulting thermal evolution and internal flow structure of
the simulated thermals is remarkably similar to the DNS of
initially spherical laminar thermals in LJ2019 (R, = 630).
Results across the range of A, are close to those of Lai et al.
(2015), who also numerically solved the filtered (discretized)
Navier-Stokes equations but using a k—§ turbulence closure
(Launder and Spaulding 1974), where k is the resolved ki-
netic energy and & is the energy dissipation rate. Our simu-
lations are integrated forward in time until the thermal top
(as defined in section 3b) reaches a height of 15R, above the
initial thermal top (i.e., top of the initial buoyancy perturba-
tion). To investigate the internal thermal flow characteris-
tics, particularly the time for ascent of a parcel through the
thermal, each simulation includes forward trajectories for a
parcel placed at the thermal bottom at the initial time. We
use the built-in parcel trajectory calculations in CM1 which
are done during the model integration using linear interpo-
lation of the flow field at each model time step.

b. Analysis methodology

Thermal boundaries must first be identified and tracked in
order to analyze thermal behavior including spreading rate.
We use a method similar to LJ2019 and Morrison et al.
(2022). At each output time (at an interval of 0.542 times the
time scale y/R,/B,,), the horizontal thermal midpoint is deter-
mined by the column with maximum vertically integrated
pressure perturbation. Thermal top is defined by the buoy-
ancy field analogously to LJ2019: the provisional thermal top
height z, is calculated as the highest level where the horizon-
tally averaged B = 1/10 of the maximum horizontally aver-
aged B (maximum defined in the vertical). This is done at
each output time to generate a time series of provisional z,,
from which we calculate the thermal top ascent rate w, using a
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centered difference in time. Using z, obtained directly from
the B field can result in noise in w, and hence in thermal vol-
ume and radius. However, unlike 1.J2019 and Morrison et al.
(2022), we apply this w, directly to calculate the streamfunc-
tion and thermal boundaries rather than using a fitting proce-
dure to the analytic scaling relation w, « t~2 (or analogously,
w, %z, 1) from similarity theory. Although the fitting method
reduces noise, it is only applicable in the sticky regime after
spinup, and we are interested in thermal behavior both during
spinup and after. Although w, here is somewhat noisy, the
spreading behavior of thermals and its sensitivity to A, are
clear.

Once w, is determined, model output is azimuthally aver-
aged around the horizontal midpoint using a radial-vertical
grid (r, z) with the same grid spacing as the original Cartesian
grid. We then calculate the Stokes streamfunction using the
thermal-relative flow field. This is done by integrating

J

o 2ar(w,; — w,), (32)
P

Z —27ru,;, (33)

where u,,; and w,; are the regridded radial and vertical veloc-
ities in cylindrical coordinates, with the boundary condition
Y(r =0, z = z,) = 0. The boundary of the thermal is the ¢y = 0
contour. Thermal radius R is calculated as the widest region
with ¢y = 0. Spreading rate « is calculated from o = dR/dz, us-
ing centered finite differencing. Fractional entrainment rate €
is calculated from d(InV)/dz, where V is defined by the volume
with ¢ = 0, again using centered finite differencing. Entrain-
ment efficiency e is then obtained as the product of € and R.

Other quantities of interest are 1) vorticity, which is calcu-
lated directly from the velocity field using centered finite
differencing, and 2) buoyant and dynamic components of per-
turbation pressure, output directly from the model as de-
scribed in Morrison et al. (2022).

4. Analysis of numerical simulations

Overall structure and evolution is similar for all of the simu-
lated thermals. Starting from rest, rapid spinup ensues owing
to vorticity generation from the thermals’ buoyancy distribu-
tions. The thermals spread outward as they rise and entrain
the surrounding fluid. Spinup of the thermals (after which cir-
culation is nearly constant) occurs when a parcel initially
placed at the thermal bottom rises to near proximity of the
thermal top. Here, we calculate the critical height z. as the
thermal top height when spinup is achieved, rather than di-
rectly from the height where dw,/dz, = 0 and w, is maximum
because dw,/dz, is rather noisy. Nonetheless, z. calculated
from the parcel trajectories matches well with broad maxima
in w, as shown later.

In accordance with the theory presented in section 2, z.
ranges from about 1 to 6 as A, is varied from 0.5 to 2 (Table 2).
After spinup, when z, > z. in the “sticky” regime, the thermals
continue to expand by entraining environmental fluid, but their
overall flow structure is fairly steady. The thermals undergo a
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TABLE 2. Time-averaged o = dR/dz,, b = ela, virtual mass
parameter C,, ratio of parcel to thermal-time-averaged vertical
velocity o, circulation I', and critical spinup height z. from the
simulations with varying A,. Note that b is obtained from the
ratio of time-averaged e to time-averaged a. Because of some
noise in calculating thermal velocity directly, o is derived from
(23) using z. obtained from the simulations as described in the
text. «, e, and C, are calculated as time averages over the full
simulation period, whereas I' values are time-averaged after
spinup to the end of the simulations.

A, « b C, o r Ze
0.5 0.251 2.37 0.53 1.80 2.30 1.3
0.67 0.207 2.42 0.50 1.95 343 1.4
1 0.136 271 0.56 1.83 6.00 24
1.43 0.095 2.41 0.58 1.80 10.37 3.6
1.67 0.083 243 0.65 1.80 12.98 42
2 0.079 2.06 0.71 1.63 18.02 6.4
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slow deceleration (relative to the faster acceleration during
spinup) with w, roughly proportional to ¢~ (and thus also pro-
portional to z; 1) in accordance with the classical similarity the-
ory of Scorer (1957).

Figure 4 shows vertical cross sections through the thermal
center of B, w, horizontal vorticity in the y direction 7, and
streamfunction ¢ after spinup, when thermal top height is at
approximately z. + 2R,. Thermal flow features well docu-
mented by previous studies are seen in the figure. These
include toroidal circulations with rotation centers near the ther-
mal vertical midpoint, buoyancy concentrated near these rota-
tion centers, and downward motion (in an absolute sense and
relative to w;) along the thermal periphery. Although buoyancy
is almost entirely swept away from the thermal core (along the
vertical axis at X = 0) for the A, = 0.5 and 1 simulations, some
positive buoyancy remains in the core when A, = 2. There is
also fluid with B > 0 and n,, # 0 below the thermal in this simu-
lation (Figs. 4e.f). This occurs because not all of the initially
buoyant fluid is taken into the thermal’s vortex ring (toroidal
circulation) when the aspect ratio is large, a result also noted by
Lai et al. (2015). This behavior can be described by the
“formation number” (Gharib et al. 1998), which is related to
the maximum vorticity that can be incorporated into a vortex
ring before it “pinches off” from a trailing stem. Earlier work
showed a formation number of 4-5 for vortex rings (Gharib
et al. 1998; Wang et al. 2009), whereas Lai et al. (2015) found a
somewhat lower formation number of ~2, consistent with our
results. Despite the presence of a trailing stem of weakly buoy-
ant fluid in the A, = 2 simulation, buoyancy in the core is small
relative to that near the rotation centers, and as detailed later,
the theoretical relations between z., «, and A, proposed in
section 2 still well describe behavior of this simulation. We sus-
pect that further increases in A, would lead to greater deviation
with the theory. Indeed, Lai et al. (2015) showed little change in

3 Note that this difference may be explained in part because
Gharib et al. (1998) defined formation number by the maximum
vorticity incorporated into the vortex ring, while Lai et al. (2015)
defined it by the maximum volume of fluid incorporated.
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a as A, was increased beyond 2, likely because of the inability
of such thermals to incorporate all of the initially buoyant fluid.
The behavior of these thermals instead resembled a starting
plume, consistent with the numerical results of Bond and Johari
(2010).

Differences in thermal aspect ratio with varying initial A,
persist beyond spinup, although these differences are reduced
compared to the initial A,. The thermals with initial A, = 1
become more flattened (smaller aspect ratio) during spinup.
At the times shown in Fig. 4, the A, = 2 simulation has an as-
pect ratio just slightly larger than 1, while that for A, = 1 is
about 0.75 and that for A, = 0.5 is about 0.6. Different ther-
mal aspect ratios among the simulations are reflected by vari-
ability in time-averaged values of C,, (virtual mass parameter,
see section 2); see Table 2. Here, C, is calculated at each
model output time directly from the buoyancy and buoyant
pressure forcing averaged over the thermal volume. Larger
initial aspect ratios are associated with larger C,, consistent
with results from Tarshish et al. (2018). There is also an over-
all decrease in C,, over time during spinup as the thermals flat-
ten, particularly for the simulations with A, > 1. Changes in
thermal shape during spinup also lead to deviation in b from
the value for self-similar thermals (b = 3). The A, = 2 thermal
has the largest deviation, with b ~ 2.06, which is consistent
with it experiencing the greatest change in aspect ratio during
spinup, whereas b ranges from ~2.4 to 2.7 for the other
simulations.

Thermal behavior during spinup is illustrated in Fig. 5,
which shows vertical cross sections of B, w, n,, and ¢ in the
same format as Fig. 4 except during the spinup period for the
A, = 1 simulation. Cross sections are shown in nondimen-
sional time increments of 1.1 between ¢ = 1.6 and 4.9. For con-
text, the thermal top reaches z. at ¢+ =~ 3.7. The basic
mechanism of spinup is similar for all the runs. Consistent
with the discussion in section 2d, entrainment occurs as envi-
ronmental fluid is swept into the thermal from below in the
convergent flow. This appears as a “bite” taken from the buoy-
ancy field from below and occurs because thermal-relative ver-
tical velocities are strongest in the thermal core. Baroclinic
vorticity generation is concentrated along the edge of the
buoyancy field where there are large horizontal buoyancy gra-
dients. Once the buoyancy field is deformed and starts to wrap
around the vortex core (i.e., the center of rotation), baroclinic
generation and destruction of vorticity drives a spreading of
the thermal in the manner outlined by McKim et al. (2020)
and Morrison et al. (2021). Flattening of the thermal during
spinup is also evident in Fig. 5.

In all simulations, the thermals’ internal flow structures
consist of thermal-relative ascent in the core, with strongest
ascent along the vertical axis and descent along the periphery.
This flow pattern strongly resembles Hill’s analytic spherical
vortex. To illustrate this point further, Fig. 6 compares w pro-
files along the thermals’ vertical axis from the simulations
with A, of 0.5, 1, and 2 with w profiles at the vertical axis from
Hill’s vortex given by (26) and (27). This is similar to the com-
parison of w profiles from thermal simulations with Hill’s vor-
tex in Lai et al. (2015, Fig. 12 therein). Simulation results here
are shown at the time of spinup when the thermal top is at z..
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FIG. 4. Vertical cross sections of (left) buoyancy (color contours) and vertical velocity (thin
black solid lines for positive w and thin black dashed lines for negative w; contour values are
+0.1,0.2, 0.6, and every 0.4 thereafter); (right) vorticity in the y plane 7, (color contours) and
streamfunction ¢ (contour lines). Thick black lines show thermal boundaries defined by the
¥ = 0 isoline. Results are shown for (a),(b) A, = 0.5, (c),(d) A, = 1, and (e),(f) A, = 2. Cross
sections are shown at times when the thermal top is approximately 2R, above the critical
height z.. for each simulation (see text).
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FIG. 5. Asin Fig. 4, but for the A, = 1 simulation during spinup at
the times (¢) indicated.

Profiles from the simulations are normalized by the maximum
w with height normalized by the thermal depth; thermal bot-
tom and top heights are set to —1 and 1, respectively. Corre-
spondingly, @ = 1 in (26) and (27) for the Hill’s vortex w
profile. All of the simulations produce similar w profiles as
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Hill’s vortex, with the A, = 1 being closest. There is also a
close correspondence of the A, = 2 simulation with Hill’s vor-
tex, with greater deviation for A, = 0.5. Overall, these results
support the discussion in section 2e on the validity of approxi-
mating o for thermals from Hill’s vortex.

Differences in spreading rate « = dR/dz among the simu-
lated thermals are seen in Fig. 7a, which shows thermal radius
R as a function of z, for the simulations with A, of 0.5, 1, and
2. The increase of R with z, is clearly greater as A, is de-
creased, with « about 3 times larger in the A, = 0.5 simulation
compared to A, = 2. Although R is somewhat noisy, the over-
all spreading rates are nearly constant with z, (seen by the
dotted lines) consistent with similarity theory.

A comparison of simulated w, as a function of z, with solu-
tions to the analytic w, equation, Eq. (11), is shown in Fig. 7b.
The analytic w, are obtained using mean values of C,, b, and
a from each simulation (Table 2). The overall behavior of w,
is similar among the simulations, with a sharp increase during
spinup followed by a slower decrease after spinup. The ana-
Iytic w, are close to the simulated values for each simulation
(compared the dotted and solid lines in Fig. 7). Larger values of
a in the A, = 0.5 simulation correspond to faster spinup and
lower height of maximum w, (critical height z.) compared to the
A, = 1 and especially A, = 2 simulations with smaller «. Thus,
Z. increases with A, consistent with the theory in section 2d.

Thermal behavior during spinup for the simulations with A,
of 0.5, 1, and 2 is further illustrated in Fig. 8, which shows
time series of thermal top height z, and vertical velocity w,,
circulation I', and vertically integrated core buoyancy
(IBL, dz). Also shown in Fig. 8 are the height z,, and vertical
velocity w), of a parcel placed initially at the thermal bottom
that rises relative to the thermal as a whole. Consistent with
the discussion in previous sections, I" increases during spinup
owing to jBC dz > 0 following (13), and this is accompanied
by an increase in w,. w, increases relative to w, as the parcel
rises through the thermal core, with w, reaching a maximum
when the parcel is near the thermal’s vertical midpoint. As a
result of this velocity difference, z,, increases faster than z,.
Since the parcel is initiated on the thermal edge at its bottom,
this marks the upward advance of entraining fluid into the
thermal core (see also vertical cross sections of B in Fig. 5).
This leads to a decrease in IBC dz and the rate of increase in
I' slows (i.e., dI'/dt decreases). At the time when the parcel
rises to near thermal top (z, =~ z,), JB . dz reaches steady val-
ues near 0 (though somewhat larger in the A, = 2 simulation)
and dI'/dt ~ 0. This point defines the time 7. and height z,. of
thermal spinup consistent with the discussion in section 2. The
terms 7. and z. are calculated here as the time and height
when z,, reaches within 2% of z,. 7. is denoted by the vertical
black lines in Fig. 8. After spinup, z, tracks closely to z, and
w), remains close to w,, while both decrease slowly. Overall, I
(time-averaged past spinup) increases sharply as A, is in-
creased, from I' =~ 2.30 for A, = 0.5toI' = 18.02 for A, = 2.
Note that there is a small increase in I' in the A, = 2 simula-
tion after spinup corresponding to a small but nonnegligible
IB . dz consistent with vertical cross sections of the B field
(see Fig. 4c). This occurs because entrained fluid from below
the thermal has B > 0 in this simulation; not all the initially
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FIG. 6. Comparison of vertical profiles of w from the simulated thermals (blue crosses at each model level) with that from Hill’s analytic
spherical vortex (red lines). The thermal/vortex bottom and top heights are normalized to —1 and 1, respectively, and shown by the hori-
zontal black lines. Profiles of nondimensional w are normalized such that the maximum value is 1. Simulation results are shown for
(a) A, =0.5,(b) A, = 1, and (c) A, = 2 near the time of thermal spinup.

buoyant fluid is taken up by the thermal initially when the
aspect ratio is large so that some remains below the thermal’s
circulation as discussed earlier. Values of JBL, dz reached in the
A, = 2 simulation after spinup appear to be nearly steady in
time thereafter, and they are about an order of magnitude
larger than in the other simulations after their spinup. It is ex-
pected that JBC dz would eventually decrease in the A, = 2
simulation as the thermal continued to rise and entrain, but in-
vestigating this would require longer simulations and thus a
larger domain.

a)

Thermal R

Values of z. from the simulations, estimated from z, and
z, as described above, are compared to the theoretical linear
z.~A, relation (23) using o = 2 from Hill’s analytic vortex
(see section 2e) and using the average o = 1.80 from the
simulations (Table 2) in Fig. 9a. The simulated and theoreti-
cal z. values are similar, although the A, = 2 simulation de-
viates more substantially from the theoretical relations.
Reasons for this deviation are unclear but might be ex-
plained by the buoyant fluid entrained into the thermal
from below in this simulation, leading to some buoyancy

1

0.5 1.0 1.5
Thermal w,

1 -

0.0

FIG. 7. Vertical profiles of (a) thermal radius R and (b) ascent rate w for simulations with various A, as indicated.
Solid lines show results calculated directly from the simulations. Dotted lines in (a) show fit values of constant
a = dR/dz and in (b) show solutions to the analytic w Eq. (11) using C, = 0 and mean values of C,, , e from the

simulations.
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FIG. 8. Various nondimensional parcel and thermal properties as
a function of time ¢ during the thermals’ spinup for simulations
with (a) A, = 0.5, (b) A, = 1, and (c) A, = 2. Results are shown for
thermal top height z,, parcel height z,,, thermal ascent rate w,, par-
cel ascent rate w),, thermal circulation I', and vertically integrated
buoyancy along the thermal’s central vertical axis B.. The thermal
top height at initial time (¢ = 0) is at z = 0. Parcels at r = 0 are cen-
tered horizontally at the thermal bottom and move upward
through the thermal over time.

remaining along the thermal’s vertical axis even after
spinup. The theoretical o =~ 2 derived from the Eulerian
mean w of Hill’s vortex (see section 2e) is fairly close to o
values obtained directly from the simulations (within 10%
except for the A, = 2 simulation), though somewhat larger.
The simulated values range from 1.80 to 1.95 for A, < 2 but
are slightly smaller (=1.63) for A, = 2 (see Table 2).

A direct comparison of the simulated and theoretical values
of spreading rate « is shown in Fig. 9b. Theoretical values are
obtained from 1) Eq. (19) using z. and b derived from the
simulations (Table 2), 2) Eq. (20) using z. derived from the
simulations and b = 3 following self-similarity, 3) Eq. (25) us-
ing the average o = 1.80 from the simulations to predict z,,
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and 4) Eq. (31) which calculates « from z. predicted using
o = 2 from Hill’s analytic vortex. All of the theoretical calcula-
tions for « give similar results as the simulations. The simula-
tions show a sharp decrease of a with increasing A, that
follows an approximate A, ! dependence consistent with the
theoretical expressions. Using b = 3 instead of b values ob-
tained directly from the simulations leads to a small decrease
in theoretical «. In this case, a values are somewhat smaller
than simulated values for A, = 1, but closer to simulated val-
ues for A, < 1. Using (31) to calculate o well describes the
a—A, relation but with ~10% larger o compared to the simula-
tions (solid line in Fig. 9b). This is consistent with the small
overestimation of o = 2 approximated from Hill’s vortex. Us-
ing the average o from the simulations (o = 1.80) to predict
Z., and in turn « following (25), gives a close correspondence
to the simulated « over the range of A, (dotted line in Fig. 9b).

5. Discussion

Overall, the simulations and theory are in reasonable agree-
ment regarding thermal top height at spinup z. and thermal
spreading rate « and how they vary with initial aspect ratio
A,. Our results indicate a nearly linear relation between z.
and A, (though with greater deviation for the A, = 2 simula-
tion) and an inverse relation between « and A, (axA; ).
Qualitatively, this a—A, relation is consistent with previous
thermal studies (see Fig. 17 in Lai et al. 2015). Larger « is as-
sociated with greater fractional entrainment rate which leads
to a lower critical height z., defined as the thermal top height
when w; is maximum. z. also corresponds to the thermal top
height when buoyant fluid along the thermal’s vertical axis is
replaced by nonbuoyant environmental fluid entrained and
advected upward through the thermal core, after which the
thermal is spun up and dI'/dt =~ 0. The time scale for this pro-
cess is controlled by how long it takes for parcels initially just
below the thermal bottom to ascend through the thermal,
which in turn depends on A,. By relating to « to z., and z. in
turn to A,, we obtained the inverse relation between « and A,
in section 2.

This explains why larger « is associated with smaller A, but
does not by itself explain the physical mechanism. A key
question, therefore, is what is the mechanism driving the in-
crease in « as A, is reduced? With small A,, IB . dz is rela-
tively small, and thus, I" increases slowly. This implies that at
a given nondimensional time, I" will be small relative to that
for a thermal with larger A,. As entrained fluid rises through
the thermal and sweeps out buoyant fluid along the thermal’s
vertical axis, baroclinic generation and destruction of vorticity
spread the vortex ring and hence thermal boundaries outward
(McKim et al. 2020; also see Fig. 9 in Morrison et al. 2021).
This buoyant forcing will have a relatively greater impact on
the vorticity field when I is small, thus leading to faster out-
ward spread and larger o when A, is small. This is consistent
with the impulse—circulation relation expressed by (16) after
spinup when dI'/dt ~ 0. That equation shows that for a given
domain-integrated buoyant forcing Fj, smaller I" necessitates
a larger increase in vortex ring radius R,. Note that we cannot
simply relate a to A, using the impulse—circulation equation
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FIG. 9. (a) Critical height z. and (b) thermal expansion rate « as functions of initial thermal aspect ratio A, from the
simulations and theory. « and z. obtained directly from the simulations are shown by blue crosses. Green and red
crosses in (b) show theoretical a values from (19) with b obtained from the simulations or 20 with b = 3, respectively,
with z. in both expressions obtained directly from the simulations. The theoretical z. from (23) using o = 2 from Hill’s
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respectively.

because I' appears directly in this equation, and it depends on
A, in a nonstraightforward way. The change in impulse over
time, dI./dt = Fpg, also varies with A,. Moreover, « is defined
by the change in thermal radius with thermal top height rather
than over time, and thus, relating « directly to dI,/dt and circula-
tion requires a transformation of variables using d/dt = w™'d/dz.
These complications motivated us to instead relate « to A, via
2., from which we derived the simple « = A, ! scaling as noted
above. Nonetheless, relations between impulse, buoyant forcing,
circulation, and thermal/vortex ring radius provide a more com-
plete picture of the physical mechanism underpinning this simple
a—A, relation.

This work also provides a concise explanation for why ini-
tially spherical thermals (A, = 1) have @ ~ 0.15 (for an un-
stratified, neutrally stable environment). This value of « is
intrinsically linked to the time scale for sweeping out of the
buoyancy along the thermal’s vertical axis and hence thermal
spinup, which itself depends on the ratio (o) of time-averaged
w), to w,. The thermals’ internal flow structures are similar to
Hill’s analytic spherical vortex, implying o ~ 2 and in turn
constraining the proportionality constant in the a = A, ! rela-
tion to ~0.15 (see section 2e).

An interesting feature is that, in a given simulation, « is
similar before and after thermal spinup. This is evident di-
rectly from the simulations (profiles of R in Fig. 7a, although
they are somewhat noisy, and the vertical cross sections of
thermal properties during spinup in Fig. 5), as well as indi-
rectly by closeness of the simulated and theoretical w profiles
(Fig. 7b), the latter calculated assuming constant «. Thus, «
values are “locked in” early in the simulations, and they de-
pend strongly on the initial conditions. Why is « similar during
spinup and after? A possible explanation is that circulation is
small early in the simulations, while at the same time, entrain-
ment has only just begun to erode buoyancy in the thermal
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core. This means that buoyancy gradients and hence baroclinic
generation and destruction of vorticity near the central core are
weak (vorticity generation being concentrated more along the
thermal boundary). However, because circulation and vorticity
near the vortex core are also weak, the net result is a similar
thermal spreading rate compared to later when both baroclinic
generation/destruction of vorticity and circulation are stronger.
Moreover, « is the change in R with z,, and small w during early
spinup means that a small spreading rate in time is associated
with a relatively larger a.

We also note that « is somewhat larger for turbulent com-
pared to laminar thermals; LJ2019 and Morrison et al. (2022)
found ~20% and 40% larger values for turbulent thermals,
respectively. At high Reynolds number, turbulent stresses
lead to a spindown of circulation after thermal spinup such
that dI'/dt < 0 (Nikulin 2014; McKim et al. 2020). All else
equal, dI'/dt < 0 implies a larger spreading rate following the
impulse—circulation relation (16). Nikulin (2014) developed
an analytic expression for « as a function of I', Fg, an empiri-
cal parameter 3 (encapsulating ¢, C,, and m), and an empiri-
cal proportionality constant characterizing the impact of
turbulent stresses. Using parameter values deduced from ex-
perimental data, they suggested a ~3% increase in « from
turbulent stresses. However, this study did not consider the
effects of turbulent stresses on thermals starting from rest.
Reduced circulation from turbulent stresses during spinup
might explain the order-of-magnitude larger impact on «
found by LJ2019 and Morrison et al. (2022), as both studies
simulated thermals that were initially motionless. The hypoth-
esis that turbulent stresses during spinup cause most of the
differences in « between laminar and turbulent thermals is
consistent with Fig. 3 in McKim et al. (2020), which shows
that the turbulent case has ~30% smaller I" at the time of
spinup relative to the laminar case.
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6. Summary and conclusions

This study investigated the spreading rate « and entrain-
ment behavior of dry, buoyant thermals with varying initial
aspect ratio A,. An expression was derived for the nondimen-
sional thermal ascent rate w, as a function of thermal top
height z, from the thermal w momentum budget. From this
expression, we defined a critical thermal top height z. where
dw/dz, = 0. The height z. corresponds to the thermal top
height when buoyancy is eroded along the thermal’s vertical
axis from entrainment of nonbuoyant environmental fluid
(with thermal circulation approximately constant thereafter).
We then analytically solved dw,/dz, = 0 to derive an expres-
sion relating « and z.. In turn, z. depends on A, and the ratio
o of the mean vertical velocity of a parcel rising from thermal
bottom to near its top along its vertical axis to w,. By approxi-
mating the thermal flow similarly to Hill’s analytic spherical
vortex, it was estimated o ~ 2. In this way, we derived an ana-
lytic expression for a that depends inversely on A,.

Numerical simulations of thermals with A, varying from 0.5
to 2 were analyzed and compared to the theoretical expres-
sions. The analytic formulation for w, well matched the ther-
mal simulations over the range of A,. Values of « calculated
directly from the simulations were also close to the theoretical
a over the range of A,. Consistent with the theory, increasing
A, led to slower spinup owing to an increase in distance (rela-
tive to the thermal radius) for parcels to travel from thermal
bottom to near top, meaning that core buoyancy was eroded
more slowly by entrainment. Values of o were similar among
the simulations and ranged from 1.63 to 1.95, somewhat less
than the theoretical o ~ 2 based on the flow similarity be-
tween the thermals and Hill’s vortex. This work also provided
an explanation for why initially spherical thermals (A, = 1)
have a =~ 0.15, which occurs because of the similarity of ther-
mal flow to Hill’s vortex. This gives o = 2 and constrains the
proportionality constant in the a « A ! relation to ~0.15. We
emphasize that changes in z. do not cause changes in «, but
larger « is associated with lower z., and both are controlled
by the erosion of buoyancy along the thermal’s vertical axis
driven by entrainment of nonbuoyant fluid. This process also
dictates changes in circulation that are consistent with thermal
spreading rates via the thermal impulse—circulation relation.

This study has elucidated factors controlling the spreading
rate of dry buoyant thermals. This work is relevant to buoy-
antly driven atmospheric flows, especially those with a local-
ized pulse source of buoyancy or steady source that leads to a
chain of multiple thermals. In particular, numerous studies
have noted the importance of buoyant thermals for cumulus
convection in the atmosphere (e.g., Blyth et al. 2005; Damiani
et al. 2006; Sherwood et al. 2013; Romps and Charn 2015;
Hernandez-Deckers and Sherwood 2018; Morrison et al.
2020; Peters et al. 2020). Spreading rates of dry thermals may
also indirectly impact cumulus entrainment rates by influenc-
ing the size of thermals at cloud base (Mulholland et al. 2021).
Although Vybhav and Ravichandran (2022) suggested similar
growth rates for dry and moist (cloud) thermals, Morrison
et al. (2021) found that the spreading rate of moist thermals
was almost a factor of 2 smaller than dry thermals for
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conditions typical of cumulus convection in the lower and
middle troposphere. It is unclear how results from the current
study might translate to cumulus thermals, given the impact
of latent heating and cooling on their buoyancy distributions.
Moreover, for buoyantly driven atmospheric flows at scales
of interest, dry and moist thermals are generally turbulent.
Nikulin (2014) suggested that the effects of turbulent stresses
can be considered as an additional term leading to a small in-
crease in «. This is supported by the recent numerical modeling
studies of LJ2019 and Morrison et al. (2022), although they
demonstrated an order-of-magnitude larger impact on « than
Nikulin (2014) (~20%-40% versus a few percent). Future
work should refine understanding of the entrainment behavior
and spreading rates for dry and moist turbulent thermals.
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APPENDIX
List of Symbols
a Radius of Hill’s vortex
A Thermal cross-sectional area
A, Initial thermal aspect ratio
b Parameter defined by the ratio e to «
B Buoyancy
B, Core buoyancy along the thermal’s vertical axis
Byt Effective buoyancy
Cy Dynamic drag coefficient
C, Virtual mass parameter
D Distance traveled by the vortex as a whole over time
period At

Dy Initial thermal vertical length

e Entrainment efficiency

E Momentum entrainment

E, Euler number

f Fractional distance from vortex center where the par-
cel is initiated relative to radius a

F, Thermal-averaged pressure drag force
F, Froude number
F,p Thermal-averaged buoyant pressure drag force

F,p  Thermal-averaged dynamic pressure drag force
g Gravitational acceleration
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1 Fluid impulse

I, Fluid impulse in the z direction

k Unit vector in the vertical

k1 Integration constant

m Shape parameter defined as the ratio of V to R®
p Pressure

i Unit vector normal to the thermal’s surface

u Fluid velocity vector

Uaxi Regridded radial velocity in cylindrical coordinates
u, Displacement rate of thermal boundary

u, Effective entrainment velocity

r Radial direction in axisymmetric coordinates

R Thermal radius

R, Reynolds number

R, Ring vortex radius

S Region defined by circuit passing through the thermal
core and returning through the ambient fluid

t Time

|4 Thermal volume

w Fluid vertical velocity

w Velocity of Hill’s vortex

wai  Regridded vertical velocity in cylindrical coordinates

Wp Vertical velocity of a parcel along its Lagrangian path

Wy Vertical velocity of thermal top

z Height

Zbs Height at the bottom of region §

Ze Thermal top height at spinup

2 Height of thermal top

Zts Height at the top of region S

o Rate of increase in thermal radius with height as the
thermal rises, equivalent to dR/dz

Y Thermal shape parameter defined as the ratio AR/V

r Thermal circulation

AL,, Grid spacing of the numerical model

At Time for parcel to travel from near vortex bottom to
near its top

€ Fractional entrainment rate

Ny Horizontal vorticity in the y direction

g, Azimuthal vorticity

Q Region of space occupied by thermal

1} Streamfunction

0 Potential temperature

Fluid density

Po Constant background fluid density

o Ratio of time-averaged vertical velocities of the parcel
and thermal top

Te Time scale for thermal top to reach z,

14 Ratio of ring vortex radius to thermal radius
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