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Supporting Information Text
1. CRM Simulations

A. Organization. The spontaneous organization or ‘self-aggregation’ of convection has been much studied recently (see the
review by 1). DAM, however, has not been shown to exhibit this behavior; indeed, the simulations of (2) were initialized in an
aggregated state precisely because DAM would not spontaneously aggregate. The simulations in this study are no different, as
shown in Fig. S1 below, which plots snapshots of column relative humidity (CRH) on the last day of each simulation. CRH
here is defined as the water vapor path f pvdz (kg/ m2) divided by its saturation value. No organization is evident, and the
low CRH values associated with aggregation (0.3 and below, see Fig. 6 of 3) are not observed here. Note that the absence in
DAM of both self-aggregation as a well as a sub-grid turbulence scheme is consonant with the results of (4), who show that
entrainment of dry air into cloud updrafts via sub-grid turbulence parameterizations can be critical for aggregation.

B. LW and SW flux divergence profiles. The main text argues that (—8r F*)(T) and (—8r F5WV)(T') are separately Ts-invariant.
We confirm this in Figs. S2 and S3, which as in Fig. 2 plot —dr F profiles in z, p, and T' coordinates, but for the LW and SW
bands separately.

C. CRM clear-sky flux divergence profiles. The argument given in the main text for the Ti-invariance of —0r F' is a clear-sky
argument, but all-sky flux divergences are shown in Figs. 2, S2 and S3. We argue in the main text that this is permissible
because cloud fraction in these simulations never surpasses ~ 10% at any height, so it is the clear-sky physics which dominates.
This claim is supported by the left and center panels of Fig. S4, which shows that the clear-sky flux divergence profiles are
almost indistinguishable from the all-sky profiles in Figs. S2 and S3, and are also indeed Ti-invariant. The right panel of
Fig. S4 directly contrasts the all-sky and clear-sky —d7 F"°* profiles for the 75 = 300 K simulation, and confirms that the
cloud-radiative effect in these simulations is not dramatic.

2. Optical depth profiles

The main text argues that water vapor optical depth 75(T) is Ts-invariant. This argument was put forth by (5) and (6),
but has to our knowledge never been explicitly checked with a comprehensive radiative transfer calculation. Doing so with
RRTM is not straightforward, however, as RRTM is a ‘correlated-k’ model producing band-averaged output, where each band
(there are 16 in the LW) covers a wide range of absorption coefficients and optical depths (7). We thus turn to a different,
line-by-line radiative transfer model, RFM (8). Feeding average p, T, and specific humidity profiles into RFM with the water
vapor continuum turned on and no CO2 produces the optical depth profiles shown in Fig. S5. These show a reasonable degree
of Ty-invariance across a wide range of surface optical depths (and hence absorption coefficients). Deviations from perfect
Ts-invariance are likely due to pressure broadening as well as changes in lapse rate I'(T") between simulations, but this requires
further investigation. Temperature scaling factors should not contribute to deviations from Ts-invariance since these are also
Ts-invariant functions of T (e.g. Eq. (4.62) of reference 9).

3. GCM analysis

A. Variance of —9rF™* and I'(T). Figure S6 plots the variance Var(I") of I'(T) within 7% bins for various Ts for the IPSL
model (other models show similar results). A pickup in variance in the lower atmosphere is evident, and a candidate Text is
given by the minimum temperature satisfying 7' > 240 K (to avoid the large variance regions in the upper atmosphere) and
Var(T') > 0.5 K?/km?, plotted in black dots and the dashed lines.

By Eqns. (4-6) of the main text this implies a similar pickup in variance in —9rF*, shown in Figure S7 (other models
again show similar results, and calculations using clear-sky fluxes show a similar sharp pickup in variance, though the relatively
large variances ultimately reached in the surface-based layers are sometimes smaller). We then obtain a second candidate Texs
as the minimum temperature level satisfying T > 240 K and Var(—9rF™") > 5 (W/m?/K)?. This Tex; is again shown by
black dots and dashed lines, and values are reasonably close to those obtained from Var(I"). If the Tex¢ candidate derived from
Var(—0rF HEt) exists then it is used for Texs, as it better represents where the AMIP and AMIP4K —87 F™° profiles diverge; if
this Text candidate does not exist (as for the Ts=250 K bin of the IPSL model), then Tex; as diagnosed from Var(T') is used.

B. AMIP.; profiles for other T bins. Figure 6 suggests that AMIPey profiles are often a good approximation to the AMIP4K
profiles, but this is not always the case (e.g. the IPSL panel). For a better sense of the robustness of agreement between
AMIP.x; and AMIP4K profiles, we show the analogous panels but for the Ts=280 K bins, rather than Ty = 290 K, in Fig. S8.
These show that AMIPeyt profiles are typically a good approximation to the AMIP4K profiles, and that a failure of these
profiles to line up seems to be the exception rather than the rule.

C. GCM clear-sky flux divergence and relative humidity profiles. In the main text we claimed that the near-surface features in
the GCM —07 F™°* profiles in Figs. 5 and 6 were sometimes, but not always, due to cloud radiative effects (CRE). Figure S9
show both all-sky and clear-sky —Or F™°* profiles for the AMIP case for all models for the Tt = 270 K bin, for which many
models show a significant near-surface CRE. Figure S10, which is analogous to Fig. S9 but for the 7y = 290 K bin, shows on
the other hand that in this T bin the near-surface CRE across models is less consistent and less significant.
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Figure S11 supports the claim in the main text that Ts-binned RH profiles also exhibit Ti-invariance aloft, but have
near-surface features which shift downwards with warming. RH profiles are binned exactly as for the radiative fluxes, as
described in Materials and Methods.

Figure S12 shows all-sky —0rF™W and —0rFSVW for the T:=290 K (AMIP) and 7:=294 K (AMIP4K) bins for all our
CFMIP models, demonstrating that the Ts-invariance in GCMs holds for both the LW and SW separately, just as for the CRM
(Figs. S2 and S3).
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Fig. S1. Snapshots of column relative humidity (CRH) from the last day of each RCE simulation. No organization is evident, and the low CRH values associated with

aggregation (< 0.3) are not observed.
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Fig. S2. LW flux divergence —Or F™¥W as diagnosed from RRTM coupled to our CRM RCE simulations at 75=(280, 290, 300, 310, 320) K. Fluxes are plotted from the lifting
condensation level of each simulation to 22.5 km for clarity, and in height, pressure, and temperature coordinates to emphasize the T;-invariance of (—O01 FLW)(T).
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Fig. §3. As in Fig. S2, but for the SW band.
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Fig. S4. Left: Clear-sky LW flux divergence —87 F.2"V Center: Clear-sky SW flux divergence —dr FS™ Right: Clear-sky and all-sky net flux divergence for the Ts = 300

K simulations, all plotted as in Fig. 2. The left and center panels are almost identical to the right panels of Figs. S2 and S3, and the right panel above shows directly the small
difference between the all-sky and clear-sky flux divergences for the T5=300 K simulation.
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Optical Depth
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Fig. S5. Optical depth profiles 7x (T"), obtained by feeding thermodynamic profiles from the RCE simulations into the RFM line-by-line radiative transfer code. Profiles are
shown for water vapor only at three different wavelengths corresponding to surface optical depths of 0.01, 1, and 100 in the Tx=280 K simulation. A reasonable degree of
Ts-invariance is seen at each wavelength: over the 30 K range of T&, the temperature at which these lines reach 7, = 1 for example (where cooling-to-space is maximized)
varies by at most 8 K, or a little over 25% of the T range.
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Fig. S6. Variance of T'(7T") within T} bins for the IPSL model. A fairly sharp pickup in the lower atmosphere is evident, similar to that found for —dr F™¢* profiles (Fig. S7).
Black dots and dashed lines mark where the profiles exceed a threshold of 0.5 K2 /km
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Fig. S7. Variance of —d7 F™°* within T} bins for the IPSL model. A fairly sharp pickup in the lower atmosphere is evident for most bins, which is then used to diagnose T+,
plotted in black dots. See Sl text 3A for details.
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Fig. $8. As in Fig. 6 of the main text but for the T, = 280 K bins.
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Fig. S9. All-sky and clear-sky —&1 F™°* profiles for the AMIP case for all models for the T, = 270 K bin. The majority of models show a significant near-surface CRE.
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Fig. $10. As in Fig. S9, but for the Ty = 290 K bin. The near-surface CRE is much less significant across models than for the 75 = 270 K bin.
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